Изменение вязкости. Коэффициент вязкости

1

Физико-химические и кристаллизационные процессы в керамических массах с минерализующими добавками определяют характер изменения вязкости образующейся жидкой фазы, а также соотношения кристаллической и жидкой фазы, что находит отражение на изменение вязкости системы в целом. Применение минерализующих добавок является во многих случаях определяющим фактором улучшения и направленного регулирования свойств керамических материалов широкой номенклатуры. Установлено, что минерализующее действие ряда минерализующих веществ приведет к ускорению термических превращений в глинистых системах. Эффективность воздействия минерализаторов находится в зависимости от их реологических характеристик в температурном интервале обжига керамических масс. Нашли экспериментальное подтверждение предположения об эффективности и целесообразности использования комплексных минерализующих добавок, сочетающих минерализаторы с низкой температурой плавления и ускорители спекания с низкой динамической вязкостью для регулирования процесса образования жидкой фазы с оптимальными реологическими характеристиками.

вязкость

минерализующий компонент

реологические свойства

спекание

скорость нагрева

1. Безбородов М.А. Вязкость силикатных стекол. - Минск: Наука и техника. - 1975. -163 с.

2. Будников П.П. Влияние минерализаторов на процесс муллитизации глин, каолинов и синтетических масс / П.П. Будников, Х.О. Говоркян // ЖПХ. - 1946. - Т. XIX. - № 10-11. - С. 1029-1035.

3. Будников П.П. Реакции в смесях твердых веществ / П.П. Будников, А.М. Гинстлинг. - М. : Изд-во лит. по стр-ву, 1971. - 487 с.

4. Никифорова Э.М. Минерализаторы в керамической промышленности. - Красноярск: ГУЦМиЗ, 2004. - 108 с.

5. Chandhuri S.P. Influence of mineraliers on the constitution of hard porcelain. Part II. Microstructures // Amer. Ceran. Soc. Bull. - 1974, 53. - № 3. - Р. 251-254.

Введение

Физико-химические и кристаллизационные процессы в керамических массах с минерализующими добавками определяют характер изменения вязкости образующейся жидкой фазы, а также соотношения кристаллической и жидкой фазы, что отражается на изменении вязкости системы в целом .

Применение минерализующих добавок является во многих случаях определяющим фактором улучшения и направленного регулирования свойств керамических материалов широкой номенклатуры. Механизм действия минерализаторов во время реакций минералообразования в керамических дисперсных системах требует дальнейшего серьезного изучения .

Выбор минерализующих добавок сводится к эмпирическому подбору состава ускорителя спекания. Данный подход не обеспечивает оптимизации принимаемых технических решений. Отсутствуют технологические критерии и объективная оценка эффективности действия минерализаторов, что сдерживает их применение, в том числе и отходов промышленности. Нет общепризнанного объяснения механизма действия минерализаторов в реакциях минералообразования керамических материалов, протекающих при образовании и присутствии жидкой фазы.

Положительное действие минерализаторов нельзя относить только к ускорению образования жидкой фазы, так как необходимо учитывать изменение и других факторов (вязкости, строения расплава и др.). Как отмечают многие исследователи , положительное действие минерализаторов определяется не только ускорением образования жидкой фазы в керамических дисперсных системах, но и реологическими свойствами жидкой фазы. Не дает объяснения механизма действия минерализаторов снижение вязкости жидкой фазы и вязкости системы в целом как определяющего фактора интенсификации процессов формирования керамических дисперсных структур.

Не находят подтверждение взгляды, в соответствии с которыми снижение температуры образования жидкой фазы за счет и в присутствии минерализатора является решающим фактором активизации протекающих реакций.

Наиболее приемлемыми являются взгляды, по нашему мнению, согласно которым активизация процессов в минерализованной жидкой фазе определяется термореологическими свойствами собственно минерализаторов . Однако нельзя исключать, что только совокупность указанных проявлений определяет активизацию реакций фазообразования керамических дисперсных структур.

Материалы и методы исследований

Исследован низкосортный полиминеральный суглинок Сибирского региона, характеризующийся низким содержанием глинистых частиц. Суглинок характеризуется содержанием глинистых минералов монтмориллонита (d/n=1,530; 0,450; 0,255 нм), каолинита (d/n=0,714; 0,357; 0,237 нм) и гидрослюды (d/n=0,998; 0,447; 0,256 нм). В связи с низким содержанием глинистых частиц (до 20%) суглинок нуждается в улучшении и направленном регулировании его физико-химических и технологических свойств. Химический состав исследованного глинистого сырья приведен в таблице 1.

Таблица 1 - Химический состав исходного глинистого сырья, масс. %

Исследование динамической вязкости осуществляли методом тела, вращающегося в расплаве на ротационном вискозиметре. Минералогический состав сырьевых материалов и спеченных масс определен на основе данных рентгеноструктурного анализа, проведенного на дифрактометре фирмы Shimadzu XRD-6000. Дифференциальный термический анализ проводили с использованием дериватографа фирмы Netche Q-1500 в атмосфере воздуха.

В качестве минерализующего компонента к полиминеральной низкосортной глине изучены добавки с широким диапазоном реологических свойств в интервале обжига керамических материалов в виде соединений NaF, Na 2 СO 3 , LiCl и KCl (динамическая вязкость h= (0,6-6) Па×с) и стеклобоя (h= (10-10 14) Па×с), а также отходы промышленности, содержащие комплекс низковязких минерализующих компонентов.

Наиболее многотоннажные отходы алюминиевого производства - шламы газоочистки представлены тонкодисперсным материалом черного цвета с размером частиц от 0,071 до 1,0 мм. Микроскопическое исследование шлама показало, что материал состоит из метаморфизованных угольных частиц графита, криолита, хиолита, корунда, флюорита, нефелина, диаспора и др. На дифрактограмме графит фиксируется по линиям с величиной d/n = 0,338; 0,202; 0,169 нм, корунд - d/n = 0,208; 0,255; 0,160 нм, криолит - d/n = 0,193; 0,275; 0,233 нм. При нагреве шламов наблюдается эндотермический эффект при температуре 50-100 ºС, относящийся к удалению гигроскопической воды; экзотермический эффект при 90-140 ºС связан с адсорбцией угольной массой кислорода из атмосферы; слабый эффект в интервале температур 180-300 ºС относится к процессу дегидратации гидрооксида алюминия; эндотермический эффект в 340 ºС связан с потерей воды кристаллогидратом криолита; интенсивный экзотермический эффект при 350-600 ºС относится к процессу выгорания углеродистой массы; экзотермический эффект с максимумом в 975 ºС относится к кристаллизации стеклофазы.

Химический состав смешанных отходов алюминиевого производства соответствует содержанию следующих компонентов, масс. %: SiO 2 - 0,68; Al 2 O 3 - 12,53; Fe 2 O 3 - 1,13; CaO - 0,73; MgO - 0,60; Na 2 O - 15,89; F - - 16,38; п.п.п. - 51,42. Шламы алюминиевого производства характеризуются низкой вязкостью их минерализующих составляющих NaF, Na 2 CO 3 , Na 2 SO 4 , NaHCO 3 , Na 3 AlF 6 , AlF 3 друг с другом с h 900-1000 ºС =(4,9-1,9) Па×с.

Результаты исследований и их обсуждение

Изменение вязкости керамической системы с минерализующими добавками в зависимости от реологических свойств минерализаторов установлено в керамических дисперсных системах из масс на основе полиминеральной глины с добавками (минерализаторы NaF, Na 2 CO 3 , стеклобой, а также отходы производства в виде шлама), имеющими температуру плавления ниже оптимальной температуры обжига глины. Кривые изменения вязкости в зависимости от температуры и вида добавки представлены на рисунке 1.

Рис. 1. Изменение вязкости садового суглинка с минерализующими добавками в зависимости от температуры: 1 - чистая глина; 2 - с добавкой стеклобоя; 3 - с Na 2 CO 3 ; 4 - c NaF; 5 - c добавкой шлама.

Анализ процессов, обуславливающих аномалии на кривых вязкости, свидетельствует о том, что с вводом минерализующих добавок кристаллизационные процессы претерпевают изменения.

Так, появление жидкой фазы за счет эвтектических расплавов, характеризующееся для полиминеральной глины температурой в 875 ºС, сдвигается в область более низких температур: при добавлении стеклобоя на 15 ºС, Na 2 CO 3 - на 70 ºС, NaF - на 75 ºС, шлама - на 80 ºС. Начало появления жидкой фазы, обуславливающее монотонное снижение вязкости для масс с NaF и стеклобоем, совпадает по температуре с эндотермическим эффектом на дифференциальной кривой в 810 и 840 ºС соответственно, отвечающим появлению расплава минерализатора. Перегиб на кривой вязкости, соответствующий превращению продуктов дегидратации в новые кристаллические фазы и характеризующийся для чистой глины в 925 ºС сдвигается с вводом минерализаторов в область более низких температур, за исключением добавки стеклобоя, не изменяющего температуру начала кристаллизации новых фаз.

Добавка Na 2 CO 3 сдвигает эту температуру на 15 ºС, NaF - на 25 ºС, шлам - на 30 ºС. Перегиб на кривых, соответствующих чистой глине, и с добавками NaF и стеклобоя совпадает с экзотермическим эффектом на дифференциальной кривой в 925 и 900 ºС соответственно, отвечающим перекристаллизации новых фаз.

Наиболее интенсивно влияет на характер кристаллизационных процессов, протекающих при обжиге легкоплавкой садовой глины, добавка шлама. Очевидно, это связано с тем, что уже при 800 ºС комбинированный минерализатор из минерализующих составляющих шлама обладает низкой динамической вязкостью h=4,9 Па×с. Добавка шлама в установленном ряде активности минерализаторов и их влияние на физико-химические и кристаллизационные процессы: шлам > NaF > Na 2 СО 3 > стеклобой, опережает отдельные минерализующие составляющие шлама (NaF, Na 2 CO 3), что подтверждает эффективность комбинированных минерализаторов.

Введение добавок NaF и стеклобоя приводит к увеличению интенсивности эндотермического эффекта с максимумом в 130 ºС для садовой глины и сдвигает процесс, обусловленный дегидратацией и удалением межслоевой воды из решетки монтмориллонита в область более низких температур: NaF - на 15 ºС, стеклобоя - на 5 ºС.

По отношению к гидрослюдисто-каолинито-монтмориллонитовой садовой глине установлено значительное снижение температуры диссоциации CaCO 3 в присутствии минерализаторов и сдвиг зоны декарбонизации в область более низких температур, о чем свидетельствует смещение максимума эндотермического эффекта, соответствующего данному процессу и характеризующегося максимальным пиком в 805 ºС для глины на 55-60 ºС при добавлении NaF и на 20-25 ºС при добавлении стеклобоя.

Температура плавления минерализаторов NaF и стеклобоя выше температуры диссоциации карбоната кальция CaCO 3 , что дает основание предположить, что реакции взаимодействия между минерализатором и карбонатом кальция идут в твердой фазе с образованием твердых растворов, способствующих деформации кристаллических решеток реагирующих компонентов и повышению их реакционной способности.

Образование твердых растворов объясняется увеличением амплитуды колебания ионов Na + вокруг своего геометрического центра при 600-700 ºС и близости величины его ионного радиуса к радиусу Ca 2+ , что создает условия для внедрения иона Na + в кристаллическую решетку CaCO 3 , CaO. На термограммах сразу же после эндотермического эффекта диссоциации CaCO 3 обнаружены эндотермические эффекты при температуре 810, 840 ºС в массах с минерализаторами NaF и стеклобоем соответственно, что может быть связано с появлением жидкой фазы при температурах ниже температуры плавления минерализатора за счет образования легкоплавких эвтектик минерализатора и карбоната кальция. Это наблюдение вполне согласуется с данными Н.А. Торопова , указывающего на образование жидкой фазы в системе NaF-CaCO 3 при 400-600 ºС. Значительно больший по интенсивности пик эндотермического эффекта, связанный с появлением жидкой фазы у масс с содержанием NaF, характеризует более активный процесс ее образования в сравнении с массой глины и стеклобоя, что связано с меньшей вязкостью жидкой фазы, образованной минерализатором NaF в глине в период диссоциации кальцита и, как следствие, увеличением количества расплава за счет активизации процесса растворения в нем карбоната кальция.

Установленное значительное уменьшение интенсивности пика эндотермического эффекта, связанного с диссоциацией кальцита в массе глины и NaF, вызвано перекрытием его экзотермической реакцией образования силикатов кальция, являющимся следствием прямого ускорения воздействия гидрослюды и монтмориллонита глины и содержащихся в них минерализаторов на диссоциацию карбонатов.

Судя по приведенным выше данным, минерализующее действие ряда веществ приводит к ускорению термических превращений в глинистых системах, повышению их реакционной способности, причем эффективность воздействия минерализаторов на данные процессы находится в зависимости от их реологических характеристик в температурном интервале обжига керамических масс.

Нашли экспериментальное подтверждение предположения об эффективности и целесообразности использования комплексных минерализующих добавок, сочетающих минерализаторы с низкой температурой плавления и ускорители спекания с низкой динамической вязкостью в интервале температур обжига керамических материалов для регулирования процесса образования жидкой фазы с оптимальными реологическими характеристиками.

Результаты исследований реологических свойств комплексных добавок минерализаторов (рис. 2, 3), совпадающие с данными Бондаренко Н.В. , свидетельствуют о возможности снижения температуры плавления расплава путем сочетания минерализующих добавок с различными реологическими свойствами.

Рис. 2. Зависимость вязкости комплексной добавки от температуры и состава (масс., %): 1 - LiCl 100; 2 - KCl 100; 3 - LiCl 10, KCl 90; 4 - LiCl 30, KCl 70; 5 - LiCl 50, KCl 50; 6 - LiCl 70, KCl 30.


Рис. 3. Зависимость вязкости комплексной добавки стеклобой - NaF от температуры и состава (масс. %): 1 - стеклобой 100; 2 - NaF 100;

3 - стеклобой 50, NaF 50; 4 - стеклобой 75, NaF 25; 5 - стеклобой 25, NaF 75.

Как следует из рис. 2, наиболее эффективна с точки зрения оценки ее реологических свойств, в сравнении с чистыми добавками LiCl и KCl, комбинированная минерализующая добавка в сочетании LiCl и KCl 1:1, образующая расплав при температуре плавления LiCl, в то же время вязкость комплексной добавки приближается к вязкости KCl. Также весьма эффективна комбинированная минерализующая добавка, сочетающая низковязкую добавку NaF (h 1000º C = 2Па×с) и высоковязкую добавку стеклобоя (h 800º C = 10 9 Па×с), образующая расплав при температуре на 130 ºС ниже температуры плавления NaF. В то же время вязкость комбинированного минерализатора приближается к вязкости NaF(h 870º C =4 Па×с). В соответствии с установленными закономерностями очевидна возможность активации отдельных высоковязких добавок, характеризующихся началом размягчения в области достаточно низких температур 575-875 ºС (эрклез, борат кальция, стеклобой, фритта, цеолит) уже в данном температурном интервале.

Заключение

Установлено изменение вязкости керамической дисперсной системы из масс на основе полиминеральной глины с минерализующими добавками в зависимости от термореологических свойств минерализаторов. Выявлен характер изменения кристаллизационных процессов, обусловливающих аномалии на кривых вязкости.

Экспериментально доказана возможность повышения эффективности высоковязких добавок и перевода их термореологических свойств в оптимальный диапазон путем комбинирования с низковязкими минерализаторами. Сочетание высоковязких добавок, имеющих низкую температуру размягчения с низковязкими минерализаторами, приводит к снижению вязкости и сохранению низкой температуры размягчения.

Рецензенты:

  • Толкачев В.Я., д.т.н., профессор, главный технолог ЦПК ООО «Сибирский элемент», г. Красноярск.
  • Ступко Т.В., д.т.н., старший научный сотрудник, заведующая кафедрой «Химия» Красноярского государственного аграрного университета, г. Красноярск.

Библиографическая ссылка

Еромасов Р.Г., Никифорова Э.М., Симонова Н.С., Васильева М.Н., Таскин В.Ю. ИЗМЕНЕНИЕ ВЯЗКОСТИ КЕРАМИЧЕСКОЙ СИСТЕМЫ С МИНЕРАЛИЗАТОРАМИ // Современные проблемы науки и образования. – 2012. – № 3.;
URL: http://science-education.ru/ru/article/view?id=6282 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Коэффициент вязкости - это ключевой параметр рабочей жидкости либо газа. В физических терминах вязкость может быть определена как внутреннее трение, вызываемое движением частиц, составляющих массу жидкой (газообразной) среды, или, более просто, сопротивлением движению.

Что такое вязкость

Простейший определения вязкости: на гладкую наклонную поверхность одновременно выливают одинаковое количество воды и масла. Вода стекает быстрее масла. Она более текучая. Движущемуся маслу мешает быстро стекать более высокое трение между его молекулами (внутреннее сопротивление - вязкость). Таким образом, вязкость жидкости обратно пропорциональна ее текучести.

Коэффициент вязкости: формула

В упрощенном виде процесс движения вязкой жидкости в трубопроводе можно рассмотреть в виде плоских параллельных слоев А и В с одинаковой площадью поверхности S, расстояние между которыми составляет величину h.

Эти два слоя (А и В) перемещаются с различными скоростями (V и V+ΔV). Слой А, имеющий наибольшую скорость (V+ΔV), вовлекает в движение слой B, движущийся с меньшей скоростью (V). В то же время слой B стремится замедлить скорость слоя А. Физический смысл коэффициента вязкости заключается в том, что трение молекул, представляющих собой сопротивление слоев потока, образует силу, которую описал следующей формулой:

F = µ × S × (ΔV/h)

  • ΔV - разница скоростей движений слоев потока жидкости;
  • h - расстояние между слоями потока жидкости;
  • S - площадь поверхности слоя потока жидкости;
  • μ (мю) - коэффициент, зависящий от называется абсолютной динамической вязкостью.

В единицах измерения системы СИ формула выглядит следующим образом:

µ = (F × h) / (S × ΔV) = [Па × с] (Паскаль × секунда)

Здесь F - сила тяжести объема рабочей жидкости.

Величина вязкости

В большинстве случаев коэффициент измеряется в сантипуазах (сП) в соответствии с системой единиц СГС (сантиметр, грамм, секунда). На практике вязкость связана соотношением массы жидкости к ее объему, то есть с плотностью жидкости:

  • ρ - плотность жидкости;
  • m - масса жидкости;
  • V - объем жидкости.

Отношение между динамической вязкостью (μ) и плотностью (ρ) называется кинематической вязкостью ν (ν - по-гречески - ню):

ν = μ / ρ = [м 2 /с]

Кстати, методы определения коэффициента вязкости разные. Например, кинематическая вязкость по-прежнему измеряется в соответствии с системой СГС в сантистоксах (сСт) и в дольных величинах - стоксах (Ст):

  • 1Ст = 10 -4 м 2 /с = 1 см 2 /с;
  • 1сСт = 10 -6 м 2 /с = 1 мм 2 /с.

Определение вязкости воды

Коэффициент вязкости воды определяется измерением времени течения жидкости через калиброванную капиллярную трубку. Это устройство калибруется с помощью стандартной жидкости известной вязкости. Для определения кинематической вязкости, измеряемой в мм 2 /с, время течения жидкости, измеряемое в секундах, умножается на постоянную величину.

В качестве единицы сравнения используется вязкость дистиллированной воды, величина которой почти постоянна даже при изменении температуры. Коэффициент вязкости - это отношение времени в секундах, которое необходимо фиксированному объему дистиллированной воды для истечения из калиброванного отверстия, к аналогичному значению для испытываемой жидкости.

Вискозиметры

Вязкость измеряется в градусах Энглера (°Е), универсальных секундах Сейболта ("SUS) или градусах Редвуда (°RJ) в зависимости от типа применяемого вискозиметра. Три типа вискозиметров отличаются только количеством вытекающей жидкой среды.

Вискозиметр, измеряющий вязкость в европейской единице градус Энглера (°Е), рассчитан на 200 см 3 вытекающий жидкой среды. Вискозиметр, измеряющий вязкость в универсальных секундах Сейболта ("SUS или "SSU), используемый в США, содержит 60 см 3 испытываемой жидкости. В Англии, где используются градусы Редвуда (°RJ), вискозиметр проводит измерения вязкости 50 см 3 жидкости. Например, если 200 см 3 определенного масла течет в десять раз медленнее, чем аналогичный объем воды, то вязкость по Энглеру составляет 10°Е.

Поскольку температура является ключевым фактором, изменяющим коэффициент вязкости, то измерения обычно проводятся сначала при постоянной температуре 20°С, а затем при более высоких ее значениях. Результат, таким образом, выражается путем добавления соответствующей температуры, например: 10°Е/50°С или 2,8°Е/90°С. Вязкость жидкости при 20°С выше, чем ее вязкость при более высоких температурах. Гидравлические масла имеют следующую вязкость при соответствующих температурах:

190 сСт при 20°С = 45,4 сСт при 50°С = 11,3 сСт при 100°С.

Перевод значений

Определение коэффициента вязкости происходит в разных системах (американской, английской, СГС), и поэтому часто требуется перевести данные из одной мерной системы в другую. Для перевода значений вязкости жидкости, выраженных в градусах Энглера, в сантистоксы (мм 2 /с) используют следующую эмпирическую формулу:

ν(сСт) = 7,6 × °Е × (1-1/°Е3)

Например:

  • 2°Е = 7,6 × 2 × (1-1/23) =15,2 × (0,875) = 13,3 сСт;
  • 9°Е = 7,6 × 9 × (1-1/93) =68,4 × (0,9986) = 68,3 сСт.

С целью быстрого определения стандартной вязкости гидравлического масла формула может быть упрощена следующим образом:

ν(сСт) = 7,6 × °Е(мм 2 /с)

Имея кинематическую вязкость ν в мм 2 /с или сСт, можно перевести ее в коэффициент динамической вязкости μ, используя следующую зависимость:

Пример. Суммируя различные формулы перевода градусов Энглера (°Е), сантистоксов (сСт) и сантипуазов (сП), предположим, что гидравлическое масло с плотностью ρ=910 кг/м 3 имеет кинематическую вязкость 12°Е, что в единицах сСт составляет:

ν = 7,6 × 12 × (1-1/123) = 91,2 × (0,99) = 90,3 мм 2 /с.

Поскольку 1сСт = 10 -6 м 2 /с и 1сП = 10 -3 Н×с/м 2 , то динамическая вязкость будет равна:

μ =ν × ρ = 90,3 × 10 -6 · 910 = 0,082 Н×с/м 2 = 82 сП.

Коэффициент вязкости газа

Он определяется составом (химическим, механическим) газа, воздействующей температурой, давлением и применяется в газодинамических расчетах, связанных с движением газа. На практике вязкость газов учитывается при проектировании разработок газовых месторождений, где ведется расчет изменений коэффициента в зависимости от изменений газового состава (особенно актуально для газоконденсатных месторождений), температуры и давления.

Рассчитаем коэффициент вязкости воздуха. Процессы будут аналогичными с рассмотренными выше двумя потоками воды. Предположим, параллельно движутся два газовых потока U1 и U2, но с разной скоростью. Между слоями будет происходить конвекция (взаимное проникновение) молекул. В итоге импульс движущегося быстрее потока воздуха будет уменьшаться, а изначально движущегося медленнее - ускоряться.

Коэффициент вязкости воздуха, согласно закону Ньютона, выражается следующей формулой:

F =-h × (dU/dZ) × S

  • dU/dZ является градиентом скорости;
  • S - площадь воздействия силы;
  • Коэффициент h - динамическая вязкость.

Индекс вязкости

Индекс вязкости (ИВ) - это параметр, коррелирующий изменение вязкости и температуры. Корреляционная зависимость является статистической взаимосвязью, в данном случае двух величин, при которой изменение температуры сопутствует систематическому изменению вязкости. Чем выше индекс вязкости, тем меньше изменения между двумя величинами, то есть вязкость рабочей жидкости более стабильна при изменении температуры.

Вязкость масел

У основ современных масел индекс вязкости ниже 95-100 единиц. Поэтому в гидросистемах машин и оборудования могут использоваться достаточно стабильные рабочие жидкости, которые ограничивают широкое изменение вязкости в условиях критических температур.

«Благоприятный» коэффициент вязкости можно поддерживать введением в масло специальных присадок (полимеров), получаемых при Они повышают индекс вязкости масел за счет ограничения изменения этой характеристики в допустимом интервале. На практике при введении необходимого количества присадок низкий индекс вязкости базового масла может быть повышен до 100-105 единиц. Вместе с тем получаемая таким образом смесь ухудшает свои свойства при высоком давлении и тепловой нагрузке, снижая тем самым эффективность присадки.

В силовых контурах мощных гидросистем должны применяться рабочие жидкости с индексом вязкости 100 единиц. Рабочие жидкости с присадками, повышающими индекс вязкости, применяются в контурах гидроуправления и других системах, работающих в диапазоне низких/средних давлений, в ограниченном интервале изменения температур, с небольшими утечками и в периодическом режиме. С возрастанием давления возрастает и вязкость, но этот процесс возникает при давлениях свыше 30,0 МПа (300 бар). На практике этим фактором часто пренебрегают.

Измерение и индексация

В соответствии с международными стандартами ISO, коэффициент вязкости воды (и прочих жидких сред) выражается в сантистоксах: сСт (мм 2 /с). Измерения вязкости технологических масел должны проводиться при температурах 0°С, 40°С и 100°С. В любом случае в коде марки масла вязкость должна указываться цифрой при температуре 40°С. В ГОСТе значение вязкости дается при 50°С. Марки, наиболее часто применяемые в машиностроительной гидравлике, варьируются от ISO VG 22 до ISO VG 68.

Гидравлические масла VG 22, VG 32, VG 46, VG 68, VG 100 при температуре 40°С имеют значения вязкости, соответствующие их маркировке: 22, 32, 46, 68 и 100 сСт. Оптимальная кинематическая вязкость рабочей жидкости в гидросистемах лежит в диапазоне от 16 до 36 сСт.

Американское Общество автомобильных инженеров (Society of Automotive Engineers - SAE) установило диапазоны изменения вязкости при конкретных температурах и присвоило им соответствующие коды. Цифра, следующая за буквой W, - абсолютный динамический коэффициент вязкости μ при 0°F (-17,7°С), а кинематическая вязкость ν определялась при 212°F (100°С). Эта индексация касается всесезонных масел, применяемых в автомобильной промышленности (трансмиссионные, моторные и т. д.).

Влияние вязкости на работу гидравлики

Определение коэффициента вязкости жидкости представляет не только научно-познавательный интерес, но и несет в себе важное практическое значение. В гидросистемах рабочие жидкости не только передают энергию от насоса к гидродвигателям, но также смазывают все детали компонентов и отводят выделяемое тепло от пар трения. Не соответствующая режиму работы вязкость рабочей жидкости может серьезно нарушать эффективность всей гидравлики.

Высокая вязкость рабочей жидкости (масло очень высокой плотности) приводит к следующим негативным явлениям:

  • Повышенное сопротивление течению гидравлической жидкости вызывает излишнее падение давления в гидросистеме.
  • Замедление скорости управления и механических движений исполнительных механизмов.
  • Развитие кавитации в насосе.
  • Нулевое или слишком низкое выделение воздуха из масла в гидробаке.
  • Заметная потеря мощности (снижение КПД) гидравлики из-за высоких затрат энергии на преодоление внутреннего трения жидкости.
  • Повышенный крутящий момент первичного двигателя машины, вызываемый возрастающей нагрузкой на насосе.
  • Рост температуры гидравлической жидкости, порождаемый повышенным трением.

Таким образом, физический смысл коэффициента вязкости заключается в его влиянии (позитивном либо негативном) на узлы и механизмы транспортных средств, станков и оборудования.

Потеря мощности гидросистем

Низкая вязкость рабочей жидкости (масло невысокой плотности) приводит к следующим негативным явлениям:

  • Падение объемного КПД насосов в результате возрастающих внутренних утечек.
  • Возрастание внутренних утечек в гидрокомпонентах всей гидросистемы - насосах, клапанах, гидрораспределителях, гидромоторах.
  • Повышенный износ качающих узлов и заклинивание насосов по причине недостаточной вязкости рабочей жидкости, необходимой для обеспечения смазки трущихся деталей.

Сжимаемость

Любая жидкость под действием давления сжимается. В отношении масел и СОЖ, используемых в машиностроительной гидравлике, эмпирически установлено, что процесс сжатия обратно пропорционален величине массы жидкости на ее объем. Величина сжатия выше для минеральных масел, значительно ниже для воды и гораздо ниже для синтетических жидкостей.

В простых гидросистемах низкого давления сжимаемость жидкости ничтожно мало влияет на уменьшение первоначального объема. Но в мощных машинах с гидроприводом высокого давления и крупными гидроцилиндрами этот процесс проявляет себя заметно. У гидравлических при давлении в 10,0 МПа (100 бар) объем уменьшается на 0,7%. При этом на изменение объема сжатия в небольшой степени влияют кинематическая вязкость и тип масла.

Вывод

Определение коэффициента вязкости позволяет прогнозировать работу оборудования и механизмов при различных условиях с учетом изменения состава жидкости либо газа, давления, температуры. Также контроль этих показателей актуален в нефтегазовой сфере, коммунальном хозяйстве, других отраслях промышленности.

Воспользуйтесь удобным конвертером перевода кинематической вязкости в динамическую онлайн. Поскольку соотношение кинематической и динамической вязкости зависит от плотности, то необходимо ее также указывать при расчете в калькуляторах ниже.

Плотность и вязкость следует указывать при одинаковой температуре.

Если задать плотность при температуре отличной от температуры вязкости повлечет некоторую ошибку, степень которой будет зависеть от влияния температуры на изменение плотности для данного вещества.

Калькулятор перевода кинематической вязкости в динамическую

Конвертер позволяет перевести вязкость с размерностью в сантистоксах [сСт] в сантипуазы [сП] . Обратите внимание, что численные значения величин с размерностями [мм2/с] и [сСт] для кинематической вязкости и [сП] и [мПа*с] для динамической – равны между собой и не требуют дополнительного перевода. Для других размерностей – воспользуйтесь таблицами ниже.

Кинематическая вязкость, [мм2/с]=[сСт]

Плотность, [кг/м3]

Данный калькулятор выполняет обратное действие предыдущему.

Динамическая вязкость, [сП]=[мПа*с]

Плотность, [кг/м3]


Если вы используете условную вязкость ее необходимо перевести в кинематическую. Для этого воспользуйтесь калькулятором .

Таблицы перевода размерностей вязкости

В случае, если размерность Вашей величины не совпадает с используемой в калькуляторе, воспользуйтесь таблицами перевода.

Выберете размерность в левом столбце и умножьте свою величину на множитель, находящийся в ячейке на пересечении с размерностью в верхней строчке.

Табл. 1. Перевод размерностей кинематической вязкости ν

Табл. 2. Перевод размерностей динамической вязкости μ

Стадии появления нефти на земле

Связь динамической и кинематической вязкости

Вязкость жидкости определяет способность жидкости сопротивляться сдвигу при ее движении, а точнее сдвигу слоев относительно друг друга. Поэтому на производствах, где требуется перекачка различных сред, важно точно знать вязкость перекачиваемого продукта и правильно подбирать насосное оборудование.

В технике встречаются два вида вязкости.

  1. Кинематическая вязкость чаще используется в паспорте с характеристиками жидкости.
  2. Динамическая используется в инженерных расчетах оборудования, научно-исследовательских работах и т.д.

Перевод кинематической вязкости в динамическую производят с помощью формулы, указанной ниже, через плотность при заданной температуре:

v – кинематическая вязкость,

n – динамическая вязкость,

p – плотность.

Таким образом, зная ту или иную вязкость и плотность жидкости можно выполнить пересчет одного вида вязкости в другой по указанной формуле или через конвертер выше.

Измерение вязкости

Понятия для этих двух типов вязкости присуще только жидкостям в связи с особенностями способов измерения.

Измерение кинематической вязкости используют метод истечения жидкости через капилляр (например используя прибор Уббелоде). Измерение динамической вязкости происходит через измерение сопротивление движения тела в жидкости (например сопротивление вращению погруженного в жидкость цилиндра).

От чего зависит значение величины вязкости?

Вязкость жидкости зависит в значительной мере от температуры. С увеличением температуры вещество становится более текучим, то есть менее вязким. Причем изменение вязкости, как правило, происходит достаточно резко, то есть нелинейно.

Поскольку расстояние между молекулами жидкого вещества намного меньше, чем у газов, у жидкостей уменьшается внутреннее взаимодействие молекул из-за снижения межмолекулярных связей.

Кстати, прочтите эту статью тоже: Из чего состоит нефть

Форма молекул и их размер, а также взаимоположение и взаимодействие могут определять вязкость жидкости. Также влияет их химическая структура.

Например, для органических соединений вязкость возрастает при наличии полярных циклов и групп.

Для насыщенных углеводородов – рост происходит при “утяжелении” молекулы вещества.

ВАМ БУДЕТ ИНТЕРЕСНО:

Нефтеперерабатывающие заводы России Перевод объемного расхода в массовый и обратно Перевод баррелей нефти в тонны и обратно Трубчатые печи: конструкция и характеристики Формула числа Рейнольдса Re

1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона.

2. Ньютоновские и неньютоновские жидкости. Кровь.

3. Ламинарное и турбулентное течения, число Рейнольдса.

4. Формула Пуазейля, гидравлическое сопротивление.

5. Распределение давления при течении реальной жидкости по трубам различного сечения.

6. Методы определения вязкости жидкостей.

7. Влияние вязкости на некоторые медицинские процедуры. Ламинарность и турбулентность газового потока при наркозе. Введение жидкостей через капельницу и шприц. Риноманометрия. Фотогемотерапия.

8. Основные понятия и формулы.

9. Задачи.

Гидродинамика - раздел физики, в котором изучают вопросы движения несжимаемых жидкостей и их взаимодействие с окружающими телами.

8.1. Внутреннее трение (вязкость) жидкости. Уравнение Ньютона

В реальной жидкости вследствие взаимного притяжения и теплового движения молекул имеет место внутреннее трение, или вязкость. Рассмотрим это явление на следующем опыте (рис. 8.1).

Рис. 8.1. Течение вязкой жидкости между пластинами

Поместим слой жидкости между двумя параллельными твердыми пластинами. «Нижняя» пластина закреплена. Если двигать «верхнюю» пластину с постоянной скоростью v 1 , то c такой же скоростью будет двигаться самый «верхний» 1-й слой жидкости, который считаем «прилипшим» к верхней пластине. Этот слой влияет на нижележащий непосредственно под ним 2-й слой, заставляя его двигаться со скоростью v 2 , причем v 2 < v 1 . Каждый слой (выделим n слоев) передает движение нижележащему слою с меньшей скоростью. Слой, непосредственно «прилипший» к «нижней» пластине, остается неподвижным.

Слои взаимодействуют друг с другом: n-й слой ускоряет (п+1)-й слой, но замедляет (п-1)-й слой. Таким образом, наблюдается изменение скорости течения жидкости в направлении, перпендикулярном поверхности слоя (ось х). Такое изменение характеризуют производной dv/dx, которую называют градиентом скорости.

Силы, действующие между слоями и направленные по касательной к поверхности слоев, называются силами внутреннего трения или вязкости. Эти силы пропорциональны площади взаимодействующих слоев S и градиенту скорости. Для многих жидкостей силы внутреннего трения подчиняются уравнению Ньютона:

Коэффициент пропорциональности η называют коэффициентом внутреннего трения или динамической вязкостью (размерность η в СИ: Пас).

8.2. Ньютоновские и неньютоновские жидкости.

Кровь

Ньютоновская жидкость

Жидкость, которая подчиняется уравнению Ньютона (8.1), называют ньютоновской. Коэффициент внутреннего трения ньютоновской жидкости зависит от ее строения, температуры и давления, но не зависит от градиента скорости.

Ньютоновская жидкость - жидкость, вязкость которой не зависит от градиента скорости.

Свойствами ньютоновской жидкости обладают большинство жидкостей (вода, растворы, низкомолекулярные органические жидкости) и все газы.

Вязкость определяется с помощью специальных приборов - вискозиметров. Значения коэффициента вязкости η для некоторых жидкостей представлены в таблице.

Значение вязкости крови, представленное в таблице, относится к здоровому человеку в спокойном состоянии. При тяжелой физической работе вязкость крови увеличивается. На величину вязкости крови влияют и некоторые заболевания. Так, при сахарном диабете вязкость крови увеличивается до 23?10 -3 Пас, а при туберкулезе уменьшается до 1*10 -3 Пас. Вязкость сказывается на таком клиническом параметре, как скорость оседания эритроцитов (СОЭ).

Неньютоновская жидкость

Неньютоновская жидкость - жидкость, вязкость которой зависит от градиента скорости.

Свойствами неньютоновской жидкости обладают структурированные дисперсные системы (суспензии, эмульсии), растворы и расплавы некоторых полимеров, многие органические жидкости и др.

При прочих равных условиях вязкость таких жидкостей значительно больше, чем у ньютоновских жидкостей. Это связано с тем, что благодаря сцеплению молекул или частиц в неньютоновской жидкости образуются пространственные структуры, на разрушение которых затрачивается дополнительная энергия.

Кровь

Цельная кровь (суспензия эритроцитов в белковом растворе - плазме) является неньютоновской жидкостью вследствие агрегации эритроцитов.

Эритроцит в норме имеет форму двояковогнутого диска диаметром около 8 мкм. Он может существенно менять свою форму, например при различной осмолярности среды (рис. 8.2).

В неподвижной крови эритроциты агрегируют, образуя так называемые «монетные столбики», состоящие из 6-8 эритроцитов. Электронно-микроскопическое исследование тончайших срезов монетных столбиков выявило параллельность поверхностей прилежащих эритроцитов и постоянное межэритроцитарное расстояние при агрегации (рис. 8.3).

На рисунке 8.4 показана (зарисовка) агрегация цельной крови во влажных мазках, которая представляет собой большие конгломераты, состоящие из многих монетных столбиков. При перемешивании крови агрегаты разрушаются, а после прекращения перемешивания вновь восстанавливаются.

При протекании крови по капиллярам агрегаты эритроцитов распадаются и вязкость падает.

Вживление специальных прозрачных окошек в кожные складки позволило сфотографировать течение крови в капиллярах. На рисунке 8.5, выполненном по такой фотографии, отчетливо видна деформация кровяных клеток.

Рис. 8.2. Усредненное поперечное сечение эритроцита при различной осмолярности среды

Рис. 8.3. Схема электроннограммы агрегата из нормальных эритроцитов

Рис. 8.4. Агрегация цельной крови

Рис. 8.5. Деформация эритроцитов в капиллярах

Деформируясь, эритроциты могут продвигаться один за другим в капиллярах диаметром всего 3 мкм. Именно в таких тонких капиллярных сосудах и происходит газообмен между кровью и тканями.

Вблизи стенки капилляра образуется очень тонкий слой плазмы, который играет роль смазки. Благодаря этому сопротивление движению эритроцитов уменьшается.

8.3. Ламинарное и турбулентное течения, число Рейнольдса

В жидкости течение может быть ламинарным или турбулентным. На рисунке 8.6 это показано для одной окрашенной струи жидкости, текущей в другой.

В случае (а) струя окрашенной жидкости сохраняет неизменную форму и не смешивается с остальной жидкостью. В случае (б) окрашенная струя разрывается случайными завихрениями, картина которых меняется с течением времени. К турбулентному течению понятие «трубка тока» неприменимо.

Рис. 8.6. Ламинарное (а) и турбулентное (б) течения струи жидкости

Ламинарное (слоистое) течение - такое течение, при котором слои жидкости текут, не перемешиваясь, скользя друг относительно друга. Ламинарное течение является стационарным - скорость течения в каждой точке пространства остается постоянной.

Рассмотрим ламинарное течение ньютоновской жидкости в трубе радиуса R и длины L, давления на концах которой постоянны (Р 1 и Р 2). Выделим цилиндрическую трубку тока радиуса r (рис. 8.7).

На жидкость внутри этой трубки действуют сила давления F д = πг 2 (Р 1 - Р 2) и сила вязкого трения F тр = 2πrLηdv/dr (2πrL - пло-

Рис. 8.7. Трубка тока и действующая на нее сила трения

щадь боковой поверхности). Так как течение стационарное, сумма этих сил равна нулю:

В соответствии с приведенным выражением имеет место параболическая зависимость скорости v слоев жидкости от расстояния от них до оси трубы r (огибающая всех векторов скорости есть парабола) (рис. 8.8).

Наибольшую скорость имеет слой, текущий вдоль оси трубы (r = 0), слой, «прилипший» к стенке (r = R), неподвижен.

Рис. 8.8. Скорости слоев текущей через трубку жидкости распределены по параболе

Турбулентное (вихревое) течение - такое течение, при котором скорости частиц жидкости в каждой точке беспорядочно меняются. Такое движение сопровождается появлением звука. Турбулентное течение - это хаотическое, крайне нерегулярное, неупорядоченное течение жидкости. Элементы жидкости совершают движение по сложным неупорядоченным траекториям, что приводит к перемешиванию слоев и образованию местных завихрений.

Структура турбулентного течения представляет собой нестационарную совокупность очень большого числа малых вихрей, наложенных на основное «среднее течение».

При этом говорить о течении в ту или иную сторону можно только в среднем за какой-то промежуток времени.

Турбулентное течение связано с дополнительной затратой энергии при движении жидкости: часть энергии расходуется на беспорядочное движение, направление которого отличается от основного направления потока, что в случае крови приводит к дополнительной работе сердца. Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболевания. Этот шум прослушивается, например, на плечевой артерии при измерении давления крови.

Турбулентное движение крови может возникнуть вследствие неравномерного сужения просвета сосуда (или локального выпирания). Турбулентное течение создает условия для оседания тромбоцитов и образования агрегатов. Этот процесс часто является пусковым

в формировании тромба. Кроме того, если тромб слабо связан со стенкой сосуда, то под действием резкого перепада давления вдоль него вследствие турбулентности он может начать двигаться.

Число Рейнольдса

Понятия ламинарности и турбулентности применимы как к течению жидкости по трубам, так и к обтеканию ею различных тел. В обоих случаях характер течения зависит от скорости течения, свойств жидкости и характерного линейного размера трубы или обтекаемого тела.

Английский физик и инженер Осборн Рейнольдс (1842-1912) составил безразмерную комбинацию, величина которой и определяет характер течения. Впоследствии эта комбинация была названа числом Рейнольдса (Re):

Число Рейнольдса используют при моделировании гидро- и аэродинамических систем, в частности кровеносной системы. Модель должна иметь такое же число Рейнольдса, как и сам объект, в противном случае соответствия между ними не будет.

Важным свойством турбулентного течения (по сравнению с ламинарным) является высокое сопротивление потоку. Если бы удалось «погасить» турбулентность, то удалось бы достичь огромной экономии мощности двигателей кораблей, подводных лодок, самолетов.

8.4. Формула Пуазейля, гидравлическое сопротивление

Рассмотрим, от каких факторов зависит объем жидкости, протекающей по горизонтальной трубе.

Формула Пуазейля

При ламинарном течении жидкости по трубе радиуса R и длины L объем Q жидкости, протекающей через горизонтальную трубу за одну секунду, можно вычислить следующим образом. Выделим тонкий цилиндрический слой радиуса r и толщины dr (рис. 8.9).

Рис. 8.9. Сечение трубы с выделенным слоем жидкости

Площадь его поперечного сечения равна dS = 2πrdr. Так как выделен тонкий слой, жидкость в нем перемещается с одинаковой скоростью v. За одну секунду слой перенесет объем жидкости

Подставив сюда формулу для скорости цилиндрического слоя жидкости (8.4), получим

Это соотношение справедливо для ламинарного течения ньютоновской жидкости.

Формулу Пуазейля можно записать в виде, справедливом для труб переменного сечения. Заменим выражение (Р 1 - Р 2)/L на градиент давления dP/d/, тогда получим

Как видно из (8.8), при заданных внешних условиях объем жидкости, протекающей по трубе, пропорционален четвертой степени ее радиуса. Это очень сильная зависимость. Так, например, если при атеросклерозе радиус сосудов уменьшится в 2 раза, то для поддержания нормального кровотока перепад давлений нужно увеличить в 16 раз, что практически невозможно. В результате возникает кислородное голодание соответствующих тканей. Этим объясняется возникновение «грудной жабы». Облегчения можно достичь, вводя лекарственное вещество, которое расслабляет мышцы артериальных стенок и позволяет увеличить просвет сосуда и, следовательно, поток крови.

Поток крови, проходящей через сосуды, регулируется специальными мышцами, окружающими сосуд. При их сокращении просвет сосуда уменьшается и соответственно убывает поток крови. Таким образом, незначительным сокращением этих мышц очень точно контролируется поступление крови в ткани.

В организме путем изменения радиуса сосудов (сужения или расширения) за счет изменения объемной скорости кровотока регулируется кровоснабжение тканей, теплообмен с окружающей средой.

Причины движения крови по сосудам

Главная движущая сила кровотока - разность давлений в начале и в конце сосудистой системы: в большом круге кровообращения - разность давлений в аорте и правом предсердии, в малом круге - в легочной артерии и левом предсердии.

Дополнителные факторы, способствующие движению крови по венам в сторону сердца:

1) полулунные клапаны вен конечностей, которые открываются под напором крови только в сторону сердца;

2) присасывающее действие грудной клетки, связанное с отрицательным давлением в ней при вдохе;

3) сокращение мышц конечностей, например, при хотьбе. При этом происходит надавливание на стенки вен, и кровь, благодаря клапанам и присасывающему действию грудной клетки при вдохе, выжимается в участки, расположенные ближе к сердцу.

Гидравлическое сопротивление

Проведем аналогию между формулой Пуазейля и формулой закона Ома для участка цепи тока: I = ΔU /R. Для этого перепишем формулу (8.8) в следующем виде: Q = (P 1 - Р 2)/. Если сравнить эту формулу с законом Ома для электрического тока, то объем жидкости, протекающей через сечение трубы за одну секунду, соответствует силе тока; разность давлений на концах трубы соответствует разности потенциалов; а величина 8ηL/(πR 4) соответствует электрическому сопротивлению. Ее называют гидравлическим сопротивлением:

Гидравлическое сопротивление трубы прямо пропорционально ее длине и обратно пропорционально четвертой степени радиуса.

Если изменением кинетической энергии жидкости на некотором участке можно пренебречь, то рассмотренная аналогия применима и к потоку переменного сечения:

гидравлическим сопротивлением участка называется отношение перепада давлений к объему жидкости, протекающему за 1 секунду:

Наличие гидравлического сопротивления связано с преодолением сил внутреннего трения.

Законы гидродинамики значительно сложнее законов постоянного тока, поэтому и законы соединения труб (кровеносных сосудов) сложнее законов соединения проводников. Так, например, места резкого сужения потока (даже при небольшой длине) обладают большим собственным гидравлическим сопротивлением. Этим и объясняется значительное увеличение гидравлического сопротивления кровеносного сосуда при образовании небольшой бляшки.

Наличие собственного сопротивления у мест резкого сужения потока необходимо учитывать при расчете сопротивления участка, состоящего

Рис. 8.10. Трубы, соединенные последовательно (а) и параллельно (б)

из труб различного диаметра. На рис. 8.10,а показано последовательное сопротивление трех труб. Места сужения обладают собственным сопротивлением Х 12 и Х 23 . Поэтому сопротивление участка равно

Электрический аналог (8.13) формулы для расчета гидродинамического сопротивления параллельного соединения (рис 8.10, б) также требует учета сопротивлений мест соединения труб.

8.5. Распределение давления при течении реальной жидкости по трубам различного сечения

При течении по горизонтальной трубе реальной жидкости работа внешних сил расходуется на преодоление внутреннего трения. Поэтому статическое давление вдоль трубы постепенно падает. Этот эффект может быть продемонстрирован на простом опыте. Установим в разных местах горизонтальной трубы, по которой течет вязкая жидкость, манометрические трубки (рис. 8.11).

Рис. 8.11. Падение давления вязкой жидкости в трубах различного сечения

Из рисунка видно, что при постоянном сечении трубы давление падает пропорционально длине. При этом скорость падения давления (dP/dl ) увеличивается при уменьшении сечения трубы. Это объясняется ростом гидравлического сопротивления при уменьшении радиуса.

В кровеносной системе человека на капилляры приходится до 70 % падения давления.

8.6. Методы определения вязкости жидкостей

Совокупность методов измерения вязкости жидкости называется вискозиметрией. Прибор для измерения вязкости называется вискозиметром. В зависимости от метода измерения вязкости используют следующие типы вискозиметров.

1. Капиллярный вискозиметр Оствальда основан на использовании формулы Пуазейля. Вязкость определяется по результату измерения времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном перепаде давлений.

2. Медицинский вискозиметр Гесса с двумя капиллярами, в которых движутся две жидкости (например, дистиллированная вода и кровь). Вязкость одной жидкости должна быть известна. Учитывая, что перемещение жидкостей за одно и то же время обратно пропорционально их вязкости, вычисляют вязкость второй жидкости.

3. Вискозиметр, основанный на методе Стокса, согласно которому при движении шарика радиуса R в жидкости с вязкостью η при небольшой скорости v сила сопротивления пропорциональна вязкости этой жидкости: F = 6πηRv (формула Стокса). Эритроциты перемещаются в вязкой жидкости - плазме крови. Так как эритроциты имеют дискообразную форму и оседают в вязкой жидкости, то скорость их оседания (СОЭ) можно определить приближенно по формуле Стокса. О скорости оседания судят по количеству плазмы над осевшими эритроцитами. В норме скорость оседания эритроцитов равна: 7-12 мм/ч для женщин и 3-9 мм/ч для мужчин.

4. Вискозиметр ротационный (рис. 8.12) состоит из двух коаксиальных (соосных) цилиндров. Радиус внутреннего цилиндра - R, радиус внешнего цилиндра - R+ΔR (ΔR << R). Пространство между цилин-

Рис. 8.12. Ротационный вискозиметр (сечения вдоль и перпендикулярно оси)

драми заполняют исследуемой жидкостью до некоторой высоты h. Затем внутренний цилиндр приводят во вращение, прикладывая определенный момент сил М, и измеряют установившуюся частоту вращения ν.

Вязкость жидкости вычисляют по формуле

Применяя ротационный вискозиметр, можно измерять вязкость при разных угловых скоростях вращения ротора. Данный метод позволяет установить зависимость между вязкостью и градиентом скорости, что важно для неньютоновских жидкостей.

8.7. Влияние вязкости на некоторые медицинские

процедуры

Наркоз

В некоторых медицинских мероприятиях используется наркоз. При этом необходимо по возможности уменьшить усилия, затрачиваемые больным на дыхание через эндотрахеальные и другие дыхательные трубки, посредством которых подается дыхательная смесь из аппаратов для наркоза (рис. 8.13).

Для обеспечения плавного газового потока используются плавно изогнутые соединительные трубки. Неровности внутренних стенок трубки, резкие изгибы и изменения внутреннего диаметра трубок

Рис. 8.13. Дыхание больного через эндотрахеальную трубку

Рис. 8.14. Возникновение турбулентности газового потока в трубке с резкими неоднородностями по сечению

и соединений часто являются причинами перехода ламинарного потока в турбулентный (рис. 8.14), что затрудняет процесс дыхания у больного.

На рисунке 8.15 приведен рентгеновский снимок головы больного, показывающий, что эндотрахеальная трубка перегнулась в глотке. В данном случае у больного обязательно возникнут затруднения дыхания.

Введение жидкостей через шприц и капельницу

Шприц - очень простой прибор (рис. 8.16), который используют для инъекций. И тем не менее при описании его работы часто допускается ошибка, связанная с нахождением перепада давлений (ΔР) на игле, которая приводит к неверному результату. Считают, что

Рис. 8.15. Рентгеновский снимок, на котором виден перегиб дыхательной трубки

Рис. 8.16. Работа шприца

ΔP = F/S, где F - сила, действующая на поршень, а S - его площадь. При этом исходят из следующих соображений: поршень движется медленно и динамическим давлением жидкости в цилиндре можно

пренебречь. Это неверно - на входе в иглу линии тока сгущаются и скорость движения жидкости резко возрастает.

Строгий расчет (см. задачу 8.12) приводит к следующему результату. Перепад давления на игле (ΔР) является решением квадратного уравнения

Значения всех величин подставляются в СИ.

Ниже приводятся результаты расчетов для двух игл длины 4 см, диаметры которых отличаются в 1,5 раза.

Из результатов, представленных в нижней таблице, видно, что АР вовсе не равно F/S! При этом увеличение диаметра иглы в 1,5 раза приводит к увеличению объемной скорости всего в 3,5 раза, а не в 5 раз (1,5 4 = 5,06), как этого можно было ожидать. Ламинарный характер течения имеет место в обоих случаях.

Другим прибором для внутривенного вливания является капельница (рис. 8.17), которая позволяет вводить жидкость самотеком за счет разности давлений, создаваемой при подъеме камеры с препаратом на определенную высоту (~60 см).

Формулы 8.14, 8.15 применимы и здесь, если заменить величину F/S на гидростатическое давление столба жидкости pgh. При этом S - площадь сечения трубки, а u - скорость движения жидкости в ней. Ниже приведены результаты расчетов для h = 60 см.

Полученные значения являются правильными, но не соответствуют тому, что происходит на самом деле. В данном случае получается завышенное значение для объемной скорости ввода препарата - 0,827 см 3 /с. Реальная скорость Q = 0,278 см 3 /с (из расчета 500 мл за 30 минут). Расхождение получается из-за того, что не учтено гидравлическое сопротивление, создаваемое устройством, пережимающим трубку.

Риноманометрия

Полноценное носовое дыхание является необходимой предпосылкой для нормальной функции слуховой трубы, которая во многом зависит от степени аэрации носоглотки и правильного прохождения воздушных потоков в полости носа. Причиной нарушения носового дыхания часто являются некоторые врожденные патологии, например расщелина верхней губы и неба. Часто при лечении этой патологии

Рис. 8.17. Введение препарата через капельницу

используются хирургические методы, например реконструктивная ринохейлопластика (ринопластика - операции восстановления носа). Для объективной характеристики результатов оперативного вмешательства используется риноманометрия - метод определения объема носового дыхания и сопротивления. Скорость воздушного потока характеризуется формулой Пуазейля, при этом учитывается градиент давления, обусловленный изменением давления в носоглоточном пространстве; диаметр и длина носовой полости; характеристики воздушного потока в носоглотке (ламинарность или турбулентность). Данный метод реализуется с помощью прибора - риноманометра, который позволяет регистрировать давление в одной половине носа, пока пациент дышит через другую. Это осуществляется с помощью катетера, который специально крепится в носу. Компьютерная схема риноманометра позволяет автоматически измерить общий объем и сопротивление воздуха на вдохе и выдохе, раздельно проанализировать поток и сопротивление воздуха в каждой половине носа и рассчитать их соотношение. Это позволяет определить носовое дыхание до и после операции и оценить степень восстановления носового дыхания.

Фотогемотерапия

При заболеваниях, сопровождающихся повышением вязкости крови, для уменьшения вязкости крови применяется метод фотогемотерапии. Он заключается в том, что у больного берут небольшое количество крови (примерно 2 мл/кг веса), подвергают ее УФ-облучению и вводят обратно в кровеносное русло. Примерно через 5 мин после введения больным 100-200 мл облученной крови наблюдается значительное снижение вязкости во всем объеме (около 5 л) циркулирующей крови. Исследования зависимости вязкости от скорости движения крови показали, что при фотогемотерапии вязкость сильнее всего снижается (примерно на 30 %) в медленно движущейся крови и совсем не меняется в быстро движущейся крови. УФ-облучение вызывает снижение способности эритроцитов к агрегации и увеличивает деформируемость эритроцитов. Помимо этого происходит снижение образования тромбов. Все эти явления приводят к значительному улучшению как макро-, так и микроциркуляции крови.

8.8. Основные понятия и формулы

Окончание таблицы

8.9. Задачи

1. Вывести формулу для определения вязкости ротационным вискозиметром. Дано: R, ΔR, h, ν, M.

2. Определить время протекания крови через капилляр вискозиметра, если вода протекает через него за 10 с. Объемы воды и крови одинаковы. Плотность воды и крови равны p 1 = 1 г/см 3 , ρ 2 = 1,06 г/см 3 . Вязкость крови относительно воды равна 5 (η 2 /η 1 = 5).

3. Допустим, что в двух кровеносных сосудах градиент давления одинаков, а поток крови (объемный расход) во втором сосуде на 80% меньше, чем в первом. Найти отношение их диаметров.

4. Какова должна быть разность давлений АР на концах капилляра радиуса r = 1 мм и длины L = 10 см, чтобы за время t = 5 с через него можно было пропустить объем V = 1 см 3 воды (коэффициент вязкости η 1 = 10 -3 Пас) или глицерина (η 2 = 0,85 Пас)?

5. Падение давления в кровеносном сосуде длины L = 55 мм и радиуса r = 1,5 мм равно 365 Па. Определить, сколько миллилитров крови протекает через сосуд за 1 минуту. Коэффициент вязкости крови η = 4,5 мПа-с.

6. При атеросклерозе, вследствие образования бляшек на стенках сосуда, критическое значение числа Рейнольдса может снизиться до 1160. Определить для этого случая скорость, при которой возможен переход ламинарного течения крови в турбулентное в сосуде диаметром 2,5 мм. Плотность крови равна ρ = 1050 кг/м 3 , вязкость крови равна η = 5х10 -3 Пас.

7. Средняя скорость крови в аорте радиусом 1 см равна 30 см/с. Выяснить, является ли данное течение ламинарным? Плотность крови ρ = 1,05х10 3 кг/м 3 .

η = 4х10 -3 Па-с; Rе кр = 2300.

8. При большой физической нагрузке скорость кровотока иногда увеличивается вдвое. Пользуясь данными примера задачи (7), определить характер течения в этом случае.

Решение

Re = 2x1575 = 3150. Течение турбулентное.

Ответ: число Рейнольдса больше критического значения, поэтому течение может стать турбулентным.


10. Определить максимальную массу крови, которая может пройти за 1 с через аорту при сохранении ламинарного характера течения. Диаметр аорты D = 2 см, вязкость крови η = 4x10 -3 Па-с.

11. Определить максимальную объемную скорость протекания жидкости по игле шприца с внутренним диаметром D = 0,3 мм, при которой сохраняется ламинарный характер течения.

12. Найти объемную скорость жидкости в игле шприца. Плотность жидкости - ρ; ее вязкость - η; диаметр и длина иглы D и L соответственно; сила, действующая на поршень, - F; площадь поршня - S.

Интегрируя по r, получим:

Пусть поршень шприца движется под действием силы F со скоростью u. Тогда мощность внешней силы N F = Fu.

Суммарная работа всех сил равна изменению кинетической энергии. Следовательно,

Подставив найденное значение A P во второе уравнение, получим все интересующие нас величины: скорость поршня и, объемную скорость кровотока Q, скорость жидкости в игле v.

Вязкость является важнейшей физической константой, характеризующей эксплуатационные свойства котельных и дизельных топлив, нефтяных масел, ряда других нефтепродуктов. По значению вязкости судят о возможности распыления и прокачиваемости нефти и нефтепродуктов.

Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость.

Динамической (абсолютной) вязкостью [μ ], или внутренним трением, называют свойства реальных жидкостей оказывать сопротивление сдвигающим касательным усилиям. Очевидно, это свойство проявляется при движении жидкости. Динамическая вязкость в системе СИ измеряется в [Н·с/м 2 ]. Это сопротивление, которое оказывает жидкость при относительном перемещении двух ее слоев поверхностью 1 м 2 , находящихся на расстоянии 1 м друг от друга и перемещающихся под действием внешней силы в 1 Н со скоростью 1 м/с. Учитывая, что 1 Н/м 2 = 1 Па, динамическую вязкость часто выражают в [Па·с] или [мПа·с]. В системе СГС (CGS) размерность динамической вязкости - [дин·с/м 2 ]. Эта единица называется пуазом (1 П = 0,1 Па·с).

Переводные множители для расчета динамической [μ ] вязкости.

Единицы Микропуаз (мкП) Сантипуаз (сП) Пуаз ([г/см·с]) Па·с ([кг/м·с]) кг/(м·ч) кг·с/м 2
Микропуаз (мкП) 1 10 -4 10 -6 10 7 3,6·10 -4 1,02·10 -8
Сантипуаз (сП) 10 4 1 10 -2 10 -3 3,6 1,02·10 -4
Пуаз ([г/см·с]) 10 6 10 2 1 10 3 3,6·10 2 1,02·10 -2
Па·с ([кг/м·с]) 10 7 10 3 10 1 3 3,6·10 3 1,02·10 -1
кг/(м·ч) 2,78·10 3 2,78·10 -1 2,78·10 -3 2,78·10 -4 1 2,84·10 -3
кг·с/м 2 9,81·10 7 9,81·10 3 9,81·10 2 9,81·10 1 3,53·10 4 1

Кинематической вязкостью [ν ] называется величина, равная отношению динамической вязкости жидкости [μ ] к ее плотности [ρ ] при той же температуре: ν = μ/ρ. Единицей кинематической вязкости является [м 2 /с] - кинематическая вязкость такой жидкости, динамическая вязкость которой равна 1 Н·с/м 2 и плотность 1 кг/м 3 (Н = кг·м/с 2). В системе СГС (CGS) кинематическая вязкость выражается в [см 2 /с]. Эта единица называется стоксом (1 Ст = 10 -4 м 2 /с; 1 сСт = 1 мм 2 /с).

Переводные множители для расчета кинематической [ν ] вязкости.

Единицы мм 2 /с (сСт) см 2 /с (Ст) м 2 /с м 2 /ч
мм 2 /с (сСт) 1 10 -2 10 -6 3,6·10 -3
см 2 /с (Ст) 10 2 1 10 -4 0,36
м 2 /с 10 6 10 4 1 3,6·10 3
м 2 /ч 2,78·10 2 2,78 2,78·10 4 1

Нефти и нефтепродукты часто характеризуются условной вязкостью , за которую принимается отношение времени истечения через калиброванное отверстие стандартного вискозиметра 200 мл нефтепродукта при определенной температуре [t ] ко времени истечения 200 мл дистиллированной воды при температуре 20°С. Условная вязкость при температуре [t ] обозначается знаком ВУ, и выражается числом условных градусов.

Условная вязкость измеряется в градусах ВУ (°ВУ) (если испытание проводится в стандартном вискозиметре по ГОСТ 6258-85), секундах Сейболта и секундах Редвуда (если испытание проводится на вискозиметрах Сейболта и Редвуда).

Перевести вязкость из одной системы в другую можно при помощи номограммы .

В нефтяных дисперсных системах в определенных условиях в отличие от ньютоновских жидкостей вязкость является переменной величиной, зависящей от градиента скорости сдвига. В этих случаях нефти и нефтепродукты характеризуются эффективной или структурной вязкостью:

Для углеводородов вязкость существенно зависит от их химического состава: она повышается с увеличением молекулярной массы и температуры кипения. Наличие боковых разветвлений в молекулах алканов и нафтенов и увеличение числа циклов также повышают вязкость. Для различных групп углеводородов вязкость растет в ряду алканы - арены - цикланы.

Для определения вязкости используют специальные стандартные приборы - вискозиметры, различающиеся по принципу действия.

Кинематическая вязкость определяется для относительно маловязких светлых нефтепродуктов и масел с помощью капиллярных вискозиметров, действие которых основано на текучести жидкости через капилляр по ГОСТ 33-2000 и ГОСТ 1929-87 (вискозиметр типа ВПЖ, Пинкевича и др.).

Для вязких нефтепродуктов измеряется условная вязкость в вискозиметрах типа ВУ, Энглера и др. Истечение жидкости в этих вискозиметрах происходит через калиброванное отверстие по ГОСТ 6258-85.

Между величинами условной °ВУ и кинематической вязкости существует эмпирическая зависимость:

Вязкость наиболее вязких, структурированных нефтепродуктов определяется на ротационном вискозиметре по ГОСТ 1929-87. Метод основан на измерении усилия, необходимого для вращения внутреннего цилиндра относительно наружного при заполнении пространства между ними испытуемой жидкостью при температуре t .

Кроме стандартных методов определения вязкости иногда в исследовательских работах используются нестандартные методы, основанные на измерении вязкости по времени падения калибровочного шарика между метками или по времени затухания колебаний твердого тела в испытуемой жидкости (вискозиметры Гепплера, Гурвича и др.).

Во всех описанных стандартных методах вязкость определяют при строго постоянной температуре, поскольку с ее изменением вязкость существенно меняется.

Зависимость вязкости от температуры

Зависимость вязкости нефтепродуктов от температуры является очень важной характеристикой как в технологии переработки нефти (перекачка, теплообмен, отстой и т. д.), так и при применении товарных нефтепродуктов (слив, перекачка, фильтрование, смазка трущихся поверхностей и т. д.).

С понижением температуры вязкость их возрастает. На рисунке приведены кривые изменения вязкости в зависимости от температуры для различных смазочных масел.

Общим для всех образцов масел является наличие областей температур, в которых наступает резкое повышение вязкости.

Существует много различных формул для расчета вязкости в зависимости от температуры, но наиболее употребляемой является эмпирическая формула Вальтера:

Дважды логарифмируя это выражение, получаем:



По данному уравнению Е. Г. Семенидо была составлена номограмма на оси абсцисс которой для удобства пользования отложена температура, а на оси ординат - вязкость.

По номограмме можно найти вязкость нефтепродукта при любой заданной температуре, если известна его вязкость при двух других температурах. В этом случае значение известных вязкостей соединяют прямой и продолжают ее до пересечения с линией температуры. Точка пересечения с ней отвечает искомой вязкости. Номограмма пригодна для определения вязкости всех видов жидких нефтепродуктов.



Для нефтяных смазочных масел очень важно при эксплуатации, чтобы вязкость как можно меньше зависела от температуры, поскольку это обеспечивает хорошие смазывающие свойства масла в широком интервале температур, т. е. в соответствии с формулой Вальтера это означает, что для смазочных масел, чем ниже коэффициент В, тем выше качество масла. Это свойство масел называется индексом вязкости , который является функцией химического состава масла. Для различных углеводородов по-разному меняется вязкость от температуры. Наиболее крутая зависимость (большая величина В) для ароматических углеводородов, а наименьшая - для алканов. Нафтеновые углеводороды в этом отношении близки к алканам.

Существуют различные методы определения индекса вязкости (ИВ).

В России ИВ определяют по двум значениям кинематической вязкости при 50 и 100°С (или при 40 и 100°С - по специальной таблице Госкомитета стандартов).

При паспортизации масел ИВ рассчитывают по ГОСТ 25371-97, который предусматривает определение этой величины по вязкости при 40 и 100°С. По этому методу согласно ГОСТ (для масел с ИВ меньше 100) индекс вязкости определяется формулой:

Для всех масел с ν 100 ν, ν 1 и ν 3 ) определяют по таблице ГОСТ 25371-97 на основе ν 40 и ν 100 данного масла. Если масло более вязкое (ν 100 > 70 мм 2 /с), то величины, входящие в формулу, определяют по специальным формулам, приведенным в стандарте.

Значительно проще определять индекс вязкости по номограммам .

Еще более удобная номограмма для нахождения индекса вязкости разработана Г. В. Виноградовым. Определение ИВ сводится к соединению прямыми линиями известных величин вязкости при двух температурах. Точка пересечения этих линий соответствует искомому индексу вязкости.

Индекс вязкости - общепринятая величина, входящая в стандарты на масла во всех странах мира. Недостатком показателя индекса вязкости является то, что он характеризует поведение масла лишь в интервале температур от 37,8 до 98,8°С.


Многими исследователями было подмечено, что плотность и вязкость смазочных масел до некоторой степени отражают их углеводородный состав. Был предложен соответствующий показатель, связывающий плотность и вязкость масел и названный вязкостно-массовой константой (ВМК). Вязкостно-массовая константа может быть вычислена по формуле Ю. А. Пинкевича:

В зависимости от химического состава масла ВМК его может быть от 0,75 до 0,90, причем, чем выше ВМК масла, тем ниже его индекс вязкости.


В области низких температур смазочные масла приобретают структуру, которая характеризуется пределом текучести, пластичности, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от их предварительного механического перемешивания, а также от скорости истечения или от обоих факторов одновременно. Структурированные масла, так же как и другие структурированные нефтяные системы, не подчиняются закону течения ньютоновских жидкостей, согласно которому изменение вязкости должно зависеть только от температуры.

Масло с неразрушенной структурой имеет значительно большую вязкость, чем после ее разрушения. Если понизить вязкость такого масла путем разрушения структуры, то в спокойном состоянии эта структура восстановится и вязкость примет первоначальное значение. Способность системы самопроизвольно восстанавливать свою структуру называется тиксотропией . С увеличением скорости течения, точнее градиента скорости (участок кривой 1), структура разрушается, в связи с чем вязкость вещества снижается и доходит до определенного минимума. Этот минимум вязкости сохраняется на одном уровне и при последующем возрастании градиента скорости (участок 2) до появления турбулентного потока, после чего вязкость вновь нарастает (участок 3).

Зависимость вязкости от давления

Вязкость жидкостей, в том числе и нефтепродуктов, зависит от внешнего давления. Изменение вязкости масел с повышением давления имеет большое практическое значение, так как в некоторых узлах трения могут возникать высокие давления.

Зависимость вязкости от давления для некоторых масел иллюстрируется кривыми, вязкость масел с повышением давления изменяется по параболе. При давлении Р она может быть выражена формулой:

В нефтяных маслах меньше всего с повышением давления изменяется вязкость парафиновых углеводородов и несколько больше нафтеновых и ароматических. Вязкость высоковязких нефтепродуктов с увеличением давления повышается больше, чем вязкость маловязких. Чем выше температура, тем меньше изменяется вязкость с повышением давления.

При давлениях порядка 500 - 1000 МПа вязкость масел возрастает настолько, что они теряют свойства жидкости и превращаются в пластичную массу.

Для определения вязкости нефтепродуктов при высоком давлении Д.Э.Мапстон предложил формулу:

На основе этого уравнения Д.Э.Мапстоном разработана номограмма , при пользовании которой известные величины, например ν 0 и Р , соединяют прямой линией и отсчет получают на третьей шкале.

Вязкость смесей

При компаундировании масел часто приходится определять вязкость смесей. Как показали опыты, аддитивность свойств проявляется лишь в смесях двух весьма близких по вязкости компонентов. При большой разности вязкостей смешиваемых нефтепродуктов, как правило, вязкость меньше, чем вычисленная по правилу смешения. Приближенно вязкость смеси масел можно рассчитать, если заменить вязкости компонентов их обратной величиной - подвижностью (текучестью) ψ см :

Для определения вязкости смесей можно также пользоваться различными номограммами. Наибольшее применение нашли номограмма ASTM и вискозиграмма Молина-Гурвича . Номограмма ASTM базируется на формуле Вальтера. Номограмма Молина-Гуревича составлена на основании экспериментально найденных вязкостей смеси масел А и В, из которых А обладает вязкостью °ВУ 20 = 1,5, а В - вязкостью °ВУ 20 = 60. Оба масла смешивались в разных соотношениях от 0 до 100% (об.), и вязкость смесей устанавливалась экспериментально. На номограмме нанесены значения вязкости в уел. ед. и в мм 2 /с.

Вязкость газов и нефтяных паров

Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. С повышением температуры вязкость газов возрастает. Эта закономерность удовлетворительно описывается формулой Сазерленда:

Летучесть (фугитивность) Оптические свойства Электрические свойства