Старт в науке. Топливный элемент своими руками дома Томас деккер и его водородный топливный элемент


Топливный элемент - это электрохимическое устройство преобразования энергии, которое за счет химической реакции преобразовывает водород и кислород в электричество. В результате этого процесса образуется вода и выделяется большое количество тепла. Топливный элемент очень похож на аккумулятор, который можно зарядить и затем использовать накопленную электрическую энергию.
Изобретателем топливного элемента считают Вильяма Р. Грува, который изобрел его еще в 1839 г. В этом топливном элементе в качестве электролита использовался раствор серной кислоты, а в качестве топлива - водород, который соединялся с кислородом в среде окислителя. Следует отметить, что до недавнего времени топливные элементы использовались только в лабораториях и на космических аппаратах.
В перспективе топливные элементы смогут составить конкуренцию многим другим системам для преобразования энергии (включая газовую турбину на электростанциях) ДВС в автомобиле и электрическим батарейкам в портативных устройствах. Двигатели внутреннего сгорания сжигают топливо и используют давление, созданное расширением выделяющихся при сгорании газов, для выполнения механической работы. Аккумуляторные батареи хранят электрическую энергию, преобразовывая ее затем в химическую энергию, которая при необходимости может быть преобразована обратно в электрическую энергию. Потенциально топливные элементы очень эффективны. Еще в 1824 г. французский ученый Карно доказал, что циклы сжатия-расширения двигателя внутреннего сгорания не могут обеспечить КПД преобразования тепловой энергии (являющейся химической энергией сгорающего топлива) в механическую выше 50%. Топливный элемент не имеет движущихся частей (по крайней мере, внутри самого элемента), и поэтому они не подчиняются закону Карно. Естественно, они будут иметь больший, чем 50%, КПД и особенно эффективны при малых нагрузках. Таким образом, автомобили с топливными элементами готовы стать (и уже доказали это) более экономичными, чем обычные автомобили в реальных условиях движения.
Топливный элемент обеспечивает выработку электрического тока постоянного напряжения, который может использоваться для привода в действие электродвигателя, приборов системы освещения и других электросистем в автомобиле. Имеются несколько типов топливных элементов, различающихся используемыми химическими процессами. Топливные элементы обычно классифицируются по типу используемого в них электролита, который они используют. Некоторые типы топливных элементов являются перспективными для применения их в качестве силовых установок электростанций, а другие могут быть полезны для маленьких портативных устройств или для привода автомобилей.
Щелочной топливный элемент - это один из самых первых разработанных элементов. Они использовались в космической программе США, начиная с 1960-х гг. Такие топливные элементы очень восприимчивы к загрязнению и поэтому они требуют очень чистого водорода и кислорода. Кроме того, они очень дороги, и поэтому этот тип топливного элемента, скорее всего, не найдет широкого применения на автомобилях.
Топливные элементы на основе фосфорной кислоты могут найти применение в стационарных установках невысокой мощности. Они работают при довольно высокой температуре и поэтому требуют длительного времени для своего прогрева, что также делает их неэффективными для использования в автомобилях.
Твердоокисные топливные элементы лучше подходят для крупных стационарных генераторов электроэнергии, которые могли бы обеспечивать электричеством заводы или населенные пункты. Этот тип топливного элемента работает при очень высоких температурах (около 1000 °C). Высокая рабочая температура создает определенные проблемы, но, с другой стороны, имеется преимущество - пар, произведенный топливным элементом, может быть направлен в турбины, чтобы выработать большее количество электричества. В целом это улучшает суммарную эффективность системы.
Одна из наиболее многообещающих систем - протонно-обменный мембранный топливный элемент - ПОМТЭ (PEMFC - Protone Exchange Membrane Fuel Cell). В настоящий момент этот тип топливного элемента является наиболее перспективным, поскольку он может приводить в движение автомобили, автобусы и другие транспортные средства.

Химические процессы в топливном элементе

В топливных элементах применяется электрохимический процесс соединения водорода с кислородом, получаемым из воздуха. Как и в аккумуляторных батареях, в топливных элементах используются электроды (твердые электрические проводники) находящиеся в электролите (электрически проводимая среда). Когда в контакт с отрицательным электродом (анодом) входят молекулы водорода, последние разделяются на протоны и электроны. Протоны проходят через протонно-обменную мембрану (ПОМ) на положительный электрод (катод) топливного элемента, производя электричество. Происходит химическое соединение молекул водорода и кислорода с образованием воды, как побочного продукта этой реакции. Единственный вид выбросов от топливного элемента - водяной пар.
Электричество, произведенное топливными элементами, может использоваться в электрической трансмиссии автомобиля (состоит из преобразователя электроэнергии и асинхронного двигателя переменного тока) для получения механической энергии для привода в движение автомобиля. Работа преобразователя электроэнергии заключается в преобразовании постоянного электрического тока, произведенного топливными элементами, в переменный ток, на котором работает тяговый электродвигатель транспортного средства.


Схема устройства топливного элемента с протонно-обменной мембраной :
1 - анод;
2 - протонно-обменная мембрана (РЕМ);
3 - катализатор (красный);
4 - катод

Протонно-обменная мембрана топливного элемента (PEMFC) использует одну из самых простых реакций любого топливного элемента.


Отдельная ячейка топливного элемента

Рассмотрим, как устроен топливный элемент. Анод, отрицательный полюс топливной ячейки, проводит электроны, которые освобождены от водородных молекул, чтобы они могли использоваться во внешнем электрическом контуре (цепи). Для этого в нем гравируются каналы, распределяющие водород равномерно по всей поверхности катализатора. Катод (положительный полюс топливной ячейки) имеет гравированные каналы, которые распределяют кислород по поверхности катализатора. Он также проводит электроны назад от внешнего контура (цепи) до катализатора, где они могут соединиться с водородными ионами и кислородом с образованием воды. Электролит - протоннообменная мембрана. Это особый материал, похожий на обычный пластик, но обладающий способностью пропускать положительно заряженные ионы и блокировать проход электронов.
Катализатор - специальный материал, который облегчает реакцию между кислородом и водородом. Катализатор обычно изготавливается из платинового порошка, нанесенного очень тонким слоем на углеродистую бумагу или ткань. Катализатор должен быть шероховатым и пористым, для того чтобы его поверхность могла максимально соприкасаться с водородом и кислородом. Покрытая платиной сторона катализатора находится перед протонно-обменной мембраной (ПОМ).
Газообразный водород (Н 2) подается в топливный элемент под давлением со стороны анода. Когда молекула H2 входит в контакт с платиной на катализаторе, она разделяется на две части, два иона (H+) и два электрона (e–). Электроны проводятся через анод, где они проходят через внешний контур (цепь), выполняя полезную работу (например, приводя в действие электродвигатель) и возвращаются со стороны катода топливного элемента.
Тем временем со стороны катода топливного элемента газообразный кислород (O 2) продавливается через катализатор, где он формирует два атома кислорода. Каждый из этих атомов имеет сильный отрицательный заряд, который обеспечивает притяжение двух ионов H+ через мембрану, где они объединяются с атомом кислорода и двумя электронами из внешнего контура (цепи) с образованием молекулы воды (H 2 O).
Эта реакция в отдельном топливном элементе производит мощность приблизительно 0,7 Вт. Чтобы поднять мощность до требуемого уровня, необходимо объединить много отдельных топливных элементов, чтобы сформировать батарею топливных элементов.
Топливные элементы на основе ПОМ работают при относительно низкой температуре (около 80 °С), а это означает, что они могут быть быстро нагреты до рабочей температуры и не требуют дорогих систем охлаждения. Постоянное совершенствование технологий и материалов, используемых в этих элементах, позволили приблизить их мощность к уровню, когда батарея таких топливных элементов, занимающая небольшую часть багажника автомобиля, может обеспечить энергию, необходимую для привода автомобиля.
На протяжении последних лет большинство из ведущих мировых производителей автомобилей инвестируют большие средства в разработку конструкций автомобилей, использующих топливные элементы. Многие уже продемонстрировали автомобили на топливных элементах с удовлетворительными мощностными и динамическими характеристиками, хотя они имели довольно высокую стоимость.
Совершенствование конструкций таких автомобилей происходит очень интенсивно.


Автомобиль на топливных элементах, использует силовую установку, расположенную под полом автомобиля

Автомобиль NECAR V изготовлен на базе автомобиля Mercedes-Benz А-класса, причем вся силовая установка вместе с топливными элементами расположена под полом автомобиля. Такое конструктивное решение дает возможность разместить в салоне автомобиля четырех пассажиров и багаж. Здесь в качестве топлива для автомобиля используется не водород, а метанол. Метанол с помощью реформера (устройства, перерабатывающего метанол в водород), преобразуется в водород, необходимый для питания топливного элемента. Использование реформера на борту автомобиля дает возможность использовать в качестве топлива практически любые углеводороды, что позволяет заправлять автомобиль на топливных элементах, используя имеющуюся сеть заправок. Теоретически топливные элементы не производят ничего, кроме электричества и воды. Преобразование топлива (бензина или метанола) в водород, необходимый для топливного элемента, несколько снижает экологическую привлекательность такого автомобиля.
Компания Honda, которая занимается топливными элементами с 1989 г., изготовила в 2003 г. небольшую партию автомобилей Honda FCX-V4 с протонно-обменными топливными элементами мембранного типа фирмы Ballard. Эти топливные элементы вырабатывают 78 кВт электрической мощности, а для привода ведущих колес используются тяговые электродвигатели мощностью 60 кВт и с крутящим моментом 272 Н м. Автомобиль на топливных элементах, по сравнению с автомобилем традиционной схемы, имеет массу примерно на 40 % меньшую, что обеспечивает ему отличную динамику, а запас сжатого водорода дает возможность пробега до 355 км.


Автомобиль Honda FСX использует для движения электрическую энергию, получаемую с помощью топливных элементов
Автомобиль Honda FCX - первый в мире автомобиль на топливных элементах, который прошел государственную сертификацию в США. Автомобиль сертифицирован по нормам ZEV - Zero Emission Vehicle (автомобиль с нулевым загрязнением). Компания Honda не собирается пока продавать эти автомобили, а передает порядка 30 автомобилей в лизинг в шт. Калифорния и г. Токио, где уже существует инфраструктура водородных заправок.


Концептуальный автомобиль Hy Wire компании General Motors имеет силовую установку на топливных элементах

Большие исследования по разработке и созданию автомобилей на топливных элементах проводит компания General Motors.


Шасси автомобиля Hy Wire

При создании концептуального автомобиля GM Hy Wire было получено 26 патентов. Основу автомобиля составляет функциональная платформа толщиной 150 мм. Внутри платформы располагаются баллоны для водорода, силовая установка на топливных элементах и системы управления автомобиля, использующие новейшие технологии электронного управления по проводам. Шасси автомобиля Hy Wire представляет собой платформу небольшой толщины, в которой заключены все основные элементы конструкции автомобиля: баллоны для водорода, топливные элементы, аккумуляторы, электродвигатели и системы управления. Такой подход к конструкции дает возможность в процессе эксплуатации менять кузовы автомобиля Компания также проводит испытания опытных автомобилей Opel на топливных элементах и проектирует завод по производству топливных элементов.


Конструкция «безопасного» топливного бака для сжиженного водорода :
1 - заправочное устройство;
2 - наружный бак;
3 - опоры;
4 - датчик уровня;
5 - внутренний бак;
6 - заправочная линия;
7 - изоляция и вакуум;
8 - нагреватель;
9 - крепежная коробка

Проблеме использования водорода в качестве топлива для автомобилей уделяет много внимания компания BMW. Совместно с фирмой Magna Steyer, известной своими работами по использованию сжиженного водорода в космических исследованиях, BMW разработала топливный бак для сжиженного водорода, который может использоваться на автомобилях.


Испытания подтвердили безопасность использования топливного бака с жидким водородом

Компания провела серию испытаний на безопасность конструкции по стандартным методикам и подтвердила ее надежность.
В 2002 г. на автосалоне во Франкфурте-на-Майне (Германия) был показан автомобиль Mini Cooper Hydrogen, который использует в качестве топлива сжиженный водород. Топливный бак этого автомобиля занимает такое же место, как и обычный бензобак. Водород в этом автомобиле используется не для топливных элементов, а в качестве топлива для ДВС.


Первый в мире серийный автомобиль с топливным элементом вместо аккумуляторной батареи

В 2003 г. фирма BMW объявила о выпуске первого серийного автомобиля с топливным элементом BMW 750 hL. Батарея топливных элементов используется вместо традиционного аккумулятора. Этот автомобиль имеет 12-цилиндровый двигатель внутреннего сгорания, работающий на водороде, а топливный элемент служит альтернативой обычному аккумулятору, обеспечивая возможность работы кондиционера и других потребителей электроэнергии при длительных стоянках автомобиля с неработающим двигателем.


Заправка водородом производится роботом, водитель не участвует в этом процессе

Эта же фирма BMW разработала также роботизированные заправочные колонки, которые обеспечивают быструю и безопасную заправку автомобилей сжиженным водородом.
Появление в последние годы большого количества разработок, направленных на создание автомобилей, использующих альтернативные виды топлива и альтернативные силовые установки, свидетельствует о том, что двигатели внутреннего сгорания, которые доминировали на автомобилях в течение прошедшего столетия, в конце концов уступят дорогу более чистым экологически, эффективным и бесшумным конструкциям. Их широкое распространение на данный момент сдерживается не техническими, а, скорее, экономическими и социальными проблемами. Для их широкого применения необходимо создать определенную инфраструктуру по развитию производства альтернативных видов топлива, созданию и распространению новых заправочных станций и по преодолению ряда психологических барьеров. Использование водорода в качестве автомобильного топлива потребует решения вопросов хранения, доставки и распределения, с принятием серьезных мер безопасности.
Теоретически водород доступен в неограниченном количестве, но его производство является весьма энергоемким. Кроме того, для перевода автомобилей на работу на водородном топливе необходимо произвести два больших изменения системы питания: сначала перевести ее работу с бензина на метанол, а затем, в течение некоторого времени и на водород. Пройдет еще некоторое время, перед тем как этот вопрос будет решен.

Топливный элемент - устройство, эффективно вырабатывающее тепло и постоянный ток в результате электрохимической реакции и использующее богатое водородом топливо. По принципу работы он схож с батареей. Конструктивно топливный элемент представлен электролитом. Чем он примечателен? В отличие от тех же батарей, топливные элементы на водороде не накапливают электрическую энергию, не нуждаются в электричестве для повторной зарядки и не разряжаются. Выработка электроэнергии ячейками продолжается до тех пор, пока у них имеется запас воздуха и топлива.

Особенности

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

История появления

В 1950-1960-х годах возникшая потребность NASA в источниках энергии для длительных космических миссий спровоцировала одну из наиболее ответственных задач для существовавших на тот момент топливных элементов. Щелочные элементы используют в качестве топлива кислород и водород, которые в ходе электрохимической реакции преобразуются в побочные продукты, полезные во время космического полета - электричество, воду и тепло.

Топливные элементы впервые были открыты в начале XIX века - в 1838 году. В это же время появились первые сведения об их эффективности.

Работа над топливными элементами, использующими щелочные электролиты, началась в конце 1930-х годов. Ячейки с никелированными электродами под высоким давлением были изобретены только к 1939 году. Во время Второй Мировой войны для британских подлодок разрабатывались топливные элементы, состоящие из щелочных ячеек диаметром около 25 сантиметров.

Интерес к ним возрос в 1950-80-х годах, характеризующихся нехваткой нефтяного топлива. Страны мира начали заниматься вопросами загрязнения воздуха и окружающей среды, стремясь разработать экологически безопасные Технология производства топливных ячеек на сегодняшний день переживает активное развитие.

Принцип работы

Тепло и электроэнергия вырабатываются топливным ячейками в результате электрохимической реакции, проходящей с использованием катода, анода и электролита.

Катод и анод разделены проводящим протоны электролитом. После поступления кислорода на катод и водорода на анод запускается химическая реакция, результатом которой становятся тепло, ток и вода.

Диссоциирует на катализаторе анода, что приводит к потере им электронов. Ионы водорода поступают к катоду через электролит, одновременно электроны проходят по внешней электрической сети и создают постоянный ток, который используется для питания оборудования. Молекула кислорода на катализаторе катода объединяется с электроном и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Типы

Выбор конкретного вида топливной ячейки зависит от области ее применения. Все топливные элементы подразделяются на две основные категории - высокотемпературные и низкотемпературные. Вторые в качестве топлива используют чистый водород. Подобные устройства, как правило, требуют переработки первичного топлива в чистый водород. Процесс осуществляется с использованием специального оборудования.

Высокотемпературные топливные элементы не нуждаются в подобном, поскольку они преобразуют топливо при повышенных температурах, что исключает необходимость создания водородной инфраструктуры.

Принцип работы топливных элементов на водороде основан на превращении химической энергии в электрическую без малоэффективных процессов горения и трансформации тепловой энергии в механическую.

Общие понятия

Водородные топливные элементы представляют собой электрохимические устройства, вырабатывающие электроэнергию в результате высокоэффективного "холодного" горения топлива. Различают несколько типов подобных приборов. Наиболее перспективной технологией считаются водород-воздушные топливные элементы, оснащенные протонообменной мембранной PEMFC.

Протонпроводящая полимерная мембрана предназначена для разделения двух электродов - катода и анода. Каждый из них представлен угольной матрицей с нанесенным на нее катализатором. диссоциирует на катализаторе анода, отдавая электроны. Катионы проводятся к катоду через мембрану, однако электроны передаются во внешнюю цепь, поскольку мембрана не предназначена для передачи электронов.

Молекула кислорода на катализаторе катода объединяется с электроном из электрической цепи и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Топливные элементы на водороде используются для изготовления мембранно-электродных блоков, которые выступают в качестве основных генерирующих элементов энергетической системы.

Преимущества водородных топливных ячеек

Среди них следует выделить:

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Область применения

Благодаря высокому КПД топливные элементы на водороде применяются в различных областях:

  • Портативные зарядные устройства.
  • Энергоснабжающие системы для БПЛА.
  • Источники бесперебойного питания.
  • Прочие устройства и оборудование.

Перспективы водородной энергетики

Повсеместное использование топливных элементов на перекиси водорода будет возможно только после создания эффективного способа получения водорода. Для введения технологии в активное использование требуются новые идеи, при этом большие надежды возлагаются на концепцию биотопливных элементов и нанотехнологии. Некоторые компании сравнительно недавно выпустили эффективные катализаторы на основе различных металлов, одновременно с чем появились сведения о создании топливных ячеек без мембран, что позволило значительно удешевить производство и упростить конструкцию подобных устройств. Преимущества и характеристики топливных элементов на водороде не перевешивают их основного недостатка - высокой стоимости, особенно в сравнении с углеводородными устройствами. На создание одной водородной энергоустановки требуется минимум 500 тысяч долларов.

Как собрать топливный элемент на водороде?

Топливную ячейку небольшой мощности можно создать самостоятельно в условиях обычной домашней или школьной лаборатории. В качестве материалов используется старый противогаз, куски оргстекла, водный раствор этилового спирта и щелочь.

Корпус топливного элемента на водороде своими руками создается из оргстекла толщиной не менее пяти миллиметров. Перегородки между отсеками могут быть меньшей толщины - порядка 3 миллиметров. Оргстекло склеивается специальным клеем, изготавливаемым из хлороформа либо дихлорэтана и стружки из оргстекла. Все работы производятся только при работающей вытяжке.

В наружной стенке корпуса просверливается отверстие диаметром 5-6 сантиметров, в которое вставляется резиновая пробка и сливная стеклянная трубка. Активированный уголь из противогаза засыпается во второе и четвертое отделение корпуса топливного элемента - он будет использоваться в качестве электрода.

Циркуляция топлива будет осуществляться в первой камере, в то время как пятая заполняется воздухом, из которого будет поставляться кислород. Электролит, засыпающийся между электродами, пропитывается раствором парафина и бензина во избежание его попадания в воздушную камеру. На слой угля кладутся медные пластины с припаянными к ним проводами, через которые будет отводиться ток.

Собранный топливный элемент на водороде заряжается водкой, разбавленной водой в соотношении 1:1. В полученную смесь аккуратно добавляется едкий калий: в 200 граммах воды растворяется 70 граммов калия.

Перед испытанием топливного элемента на водороде в первую камеру заливается топливо, в третью - электролит. Показания вольтметра, подключенного к электродам, должны варьироваться от 0,7 до 0,9 вольт. Для обеспечения непрерывной работы элемента отработанное топливо должно отводиться, а через резиновую трубку - заливаться новое. Сжиманием трубки регулируется скорость подачи топлива. Подобные топливные элементы на водороде, собранные в домашних условиях, обладают небольшой мощностью.

Когда-то в будущем, о начале нашего века возможно скажут, что растущие цены на нефть и беспокойство об окружающей среде привели к резкому расширению кругозора автопроизводителей и заставили их разрабатывать и внедрять все новые и новые виды топлива и двигателей.

Одним из этих видов топлива будут называть водород. Как известно, при соединении водорода и кислорода получается вода, а значит, если поставить этот процесс в основу двигателя автомобиля, то выхлопом будет не смесь опасных газов и химических элементов, а обычная вода.

Не смотря на некоторые технические сложности, связанные с использованием водородных топливных элементов (ТЭ), автопроизводители не собираются сдаваться и уже разрабатывают свои новые модели с водородом в качестве топлива. На Франкфуртском автосалоне 2011 года можно было видеть как один из флагманов автоиндустрии, Daimler AG представила публике несколько прототипов Mercedes-Benz с водородным двигателем. В этом же году корейская Hyndai объявила, что откажется от разработок электромобилей и сконцентрируется на разработке автомобилей, которые будут использовать водородные топливные элементы.

Не смотря на это активное развитие, не так много людей точно представляют себе, что именно представляют собой эти водородные ТЭ и что у них внутри.

Для того, чтоб прояснить ситуацию, давайте обратимся к истории водородных топливных элементов.

Первым, кто теоретически описал возможность создания водородного ТЭ, был немец Christian Friedrich Schönbein. В 1838 году он описал принцип в одном из научных журналов того времени.

Годом позже. В 1939, судья из Уэльса, сэр Sir William Robert Grove создал и продемонстрировал практически работающую водородную батарею. Но заряда, производимого батареей, было недостаточно, чтоб изобретение получило широкое употребление.

Термин «топливный элемент» был впервые использован в 1889 исследователями Ludwig Mond и Charles Langer, которые совершили попытку создать работающий ТЭ с использованием воздуха и коксового газа. По другой версии, первым, кто использовал термин «топливный элемент», был William White Jaques. Он также был первым, кто использовал фосфорную кислоту в электролитной ванне.

В 1920-х годах исследования, проведенные в Германии, открыли пути использования карбонатного цикла и твердооксидных топливных элементов, которыми пользуются сейчас.

В 1932 инженер Francis T Bacon начал свое исследование водородных ТЭ. До него, исследователи использовали пористые электроды из платины и серную кислоту в электролитной ванне. Платина делала производство очень дорогим, а серная кислота создавала дополнительные сложности из-за своей едкости. Бэйкон заменил дорогую платину на никель, а серную кислоту - на менее едкий щелочной электролит.

Бэйкон постоянно совершенствовал свою разработку и в 1959 году смог представить публике 5-киловаттный топливный элемент, который был способен снабжать энергией сварочный аппарат. Исследователь назвал свой ТЭ «Bacon Cell».

В октябре того же 1959 года Harry Karl Ihrig продемонстрировал трактор мощностью в 20 лошадиных сил, который стал первым в мире транспортным средством, получавшим питание от топливного элемента.

В 1960-х годах американская General Electric использовала принцип работы топливного элемента Бэйкона и разработала систему генерации электроэнергии для космических программ NASA Gemini и Apollo. NASA просчитали, что использовать ядерный реактор было бы слишком дорого, а обычные аккумуляторы или солнечные батареи требовали слишком много пространства. Кроме того, водородные топливные элементы могли одновременно снабжать корабль электроэнергией, а экипаж - водой.

Первый автобус на водородном ТЭ был построен в 1993 году. В 1997 году автопроизводители Daimler Benz и Toyota представили свои прототипы легковых автомобилей.

— facepla.net —

Комментарии:

    А про работы по теме ТЭ в СССР забыли сказать, да?

    при получении электричества будет образовываться вода. и чем больше первого тем больше и её. А теперь представим себе как быстро капельки забьют все топливные ячейки и каналы прохода газов – Н2, О2 А как будет работать этот генератор при минусовой температуре?

    вы предлагаете сжечь десятки тон угля,выбросив в атмосферу тонны сажи получить водород,чтоб получить пару ампер тока для новомодной тесло?!
    где жеж тут экономия с экологией?!

    Вот оно – костность мышления!
    Зачем сжигать тоны угля? Мы живем в 21 веке и уже есть технологии позволяющие получать энергию вообще ничего не сжигаю. Остается только грамотно аккумулировать эту энергию для удобного дальнейшего использования.

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливной элементы зависит от его применения.

Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников. Данный процесс был разработан в середине 1960-х гг. С того времени была улучшена технология производства, рабочие показатели и надежность.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO 3 2-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO 3 2- + H 2 => H 2 O + CO 2 + 2e -
Реакция на катоде: CO 2 + 1 / 2 O 2 + 2e - => CO 3 2-
Общая реакция элемента: H 2 (g) + 1 / 2 O 2 (g) + CO 2 (катод) => H 2 O(g) + CO 2 (анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода, "отравлению", и пр.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 2,8 МВт. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования. Данный процесс был разработан в середине 1960-х гг., испытания проводились с 1970-х гг. С того времени была увеличена стабильность, рабочие показатели и снижена стоимость.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H 3 PO 4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H + , протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов (МОПТЭ), в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H 2 => 4H + + 4e -
Реакция на катоде: O 2 (g) + 4H + + 4e - => 2H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО 2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 400 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Топливные элементы с мембраной обмена протонов (МОПТЭ)

Топливные элементы с мембраной обмена протонов считаются самым лучшим типом топливных элементов для генерации питания транспортных средств, которое способно заменить бензиновые и дизельные двигатели внутреннего сгорания. Эти топливные элементы были впервые использованы НАСА для программы "Джемини". Сегодня разрабатываются и демонстрируются установки на МОПТЭ мощностью от 1Вт до 2 кВт.

В качестве электролита в этих топливных элементах используется твердая полимерная мембрана (тонкая пластмассовая пленка). При пропитывании водой этот полимер пропускает протоны, но не проводит электроны.

Топливом является водород, а носителем заряда – ион водорода (протон). На аноде молекула водорода разделяется на ион водорода (протон) и электроны. Ионы водорода проходят сквозь электролит к катоду, а электроны перемещаются по внешнему кругу и производят электрическую энергию. Кислород, который берется из воздуха, подается к катоду и соединяется с электронами и ионами водорода, образуя воду. На электродах происходят следующие реакции:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e -
Реакция на катоде: O 2 + 2H 2 O + 4e - => 4OH -
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

По сравнению с другими типами топливных элементов, топливные элементы с мембраной обмена протонов производят больше энергии при заданном объеме или весе топливного элемента. Эта особенность позволяет им быть компактными и легкими. К тому же, рабочая температура – менее 100°C, что позволяет быстро начать эксплуатацию. Эти характеристики, а также возможность быстро изменить выход энергии – лишь некоторые черты, которые делают эти топливные элементы первым кандидатом для использования в транспортных средствах.

Другим преимуществом является то, что электролитом выступает твердое, а не жидкое, вещество. Удержать газы на катоде и аноде легче с использованием твердого электролита, и поэтому такие топливные элементы более дешевы для производства. По сравнению с другими электролитами, при применении твердого электролита не возникает таких трудностей, как ориентация, возникает меньше проблем из-за появления коррозии, что ведет к большей долговечности элемента и его компонентов.

Твердооксидные топливные элементы (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О 2 -). Технология использования твердооксидных топливных элементов развивается с конца 1950-х гг. и имеет две конфигурации: плоскостную и трубчатую.

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О 2 -). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H 2 + 2O 2 - => 2H 2 O + 4e -
Реакция на катоде: O 2 + 4e - => 2O 2 -
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60%. Помимо этого, высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 70%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH 3 OH) окисляется при наличии воды на аноде с выделением СО 2 , ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH 3 OH + H 2 O => CO 2 + 6H + + 6e -
Реакция на катоде: 3 / 2 O 2 + 6H + + 6e - => 3H 2 O
Общая реакция элемента: CH 3 OH + 3 / 2 O 2 => CO 2 + 2H 2 O

Разработка данных топливных элементов была начата в начале 1990-х гг. После создания улучшенных катализаторов и, благодаря другим недавним нововведениям, была увеличена удельная мощность и КПД до 40%.

Были проведены испытания данных элементов в температурном диапазоне 50-120°C. Благодаря низким рабочим температурам и отсутствию необходимости использования преобразователя, топливные элементы с прямым окислением метанола являются лучшим кандидатом для применения как в мобильных телефонах и других товарах широкого потребления, так и в двигателях автомобилей. Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы (ЩТЭ)

Щелочные топливные элементы (ЩТЭ) – одна из наиболее изученных технологий, используемая с середины 1960-х гг. агентством НАСА в программах "Аполлон" и "Спейс Шаттл". На борту этих космических кораблей топливные элементы производят электрическую энергию и питьевую воду. Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°С до 220°С. Носителем заряда в ЩТЭ является гидроксильный ион (ОН -), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e -
Реакция на катоде: O 2 + 2H 2 O + 4e - => 4OH -
Общая реакция системы: 2H 2 + O 2 => 2H 2 O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. Кроме того, ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO 2 , который может содержаться в топливе или воздухе. CO 2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H 2 O и CH 4 , которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы (ПЭТЭ)


В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H 2 O + (протон, красный) присоединяется к молекуле воды. Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°С.

Твердокислотные топливные элементы (ТКТЭ)


В твердокислотных топливных элементах электролит (C s HSO 4) не содержит воды. Рабочая температура поэтому составляет 100-300°С. Вращение окси анионов SO 4 2- позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.



Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные установки
ЩТЭ 50–200°C 40-65% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Растущие потребности потребления энергии требуют поиска её перспективных источников. В решении этой проблемы немаловажную роль могут сыграть источники тока, называемые топливными элементами.

Цель данного проекта - ознакомившись с принципами работы топливных элементов, изготовить действующую модель данного вида источника электрической энергии. Задача работы : изучив теоретический материал по основам функционирования топливных элементов и ознакомившись с существующими типами этих источников тока, изготовить действующую авторскую модель элемента. Был выбран именно этот источник тока, так как в нём энергия топлива непосредственно преобразуется в электрическую без применения различных промежуточных устройств.

Гипотеза - возможность самостоятельной разработки и создания авторской модели топливного элемента. Объект исследования : источники тока - топливные элементы. Предмет исследования - технические и электрические характеристики этих источников тока. Методы исследования - изучение необходимого теоретического материала, выполнение экспериментов по созданию собственной работоспособной топливной ячейки для водородно - кислородного топливного элемента со щелочным электролитом и проведение испытаний работы полученного источника тока. Практическая значимостьи актуальность проекта не подлежат сомнению.Топливные элементы очень интересны и перспективны ввиду того, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду. Таким образом, они высокоэффективны, бесшумны, не загрязняют атмосферу и, следовательно, имеют преимущества с точки зрения экологии.

Новизна проекта: создание собственной работоспособной топливной ячейки для водородно - кислородного топливного элемента со щелочным электролитом (как протонно-обменную мембрану автор использовал микроканальную пластину, как бесплатиновый катализатор - игольчатые монокристаллы оксида молибдена, легированные золотом).

2. Теоретическая часть.

2.1. Топливные элементы

Топливный элемент - устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент (ТЭ) подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Как и батарея он имеет анод, катод и электролит. Однако, в отличие от батарей, топливные элементы не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. ТЭ могут постоянно вырабатывать электроэнергию, пока имеют запас топлива и воздуха.

Несмотря на то, что первые топливные элементы появились более 100 лет назад, до сих пор не удалось создать «идеальный» топливный элемент. Существующие в настоящее время топливные элементы строятся по различным схемам, работают при температурах от комнатных до нескольких сотен градусов, используют жидкое или газообразное топливо. Все их объединяет то, что и топливо, и окислитель подводится из внешних резервуаров. Таким образом, количество электрической энергии, которую может произвести топливный элемент, ограничено только емкостью этих внешних хранилищ. Емкость их может быть практически бесконечной.

Преимущества. В отличие от традиционных гальванических элементов или аккумуляторов, в которых топливо и окислитель хранятся внутри корпуса и не могут быть заменены или добавлены по мере израсходования, некоторые типы топливных элементов можно использовать сразу после подачи топлива и окислителя (другие типы требуют предварительной процедуры запуска). Топливные элементы, использующие жидкое топливо, имеют значительно более высокий КПД по сравнению с традиционными двигателями на таком же топливе и соединенными с электрическим генератором. Топливный элемент преобразует реакцию окисления топлива непосредственно в электрическую энергию без промежуточных устройств.

Недостатки. К ним относят дороговизну платиновых катализаторов, являющихся обязательной составной частью многих типов топливных элементов. Возможность необратимого «отравления» такого катализатора в случае применения топлива с загрязнениями. И как следствие или полная неработоспособность топливного элемента, или потеря мощности с одновременным ухудшением коэффициента полезного действия. Также существует проблема безопасного хранения больших объемов водорода в случае водородно-кислородных ТЭ. Следующий недостаток - неспособность ТЭ обеспечивать кратковременные пиковые мощности. (Приходится дополнительно устанавливать аккумуляторы традиционных конструкций).

В настоящее время ведётся поиск эффективных бесплатиновых катализаторов и протонно-обменных мембран, а также оптимизация конструкции электродов и совершенствование способов хранения топлива в случае использования ТЭ для транспортных средств.

2. 2. Типы топливных элементов

Рассмотрим некоторые виды ТЭ. В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и др., топливные элементы не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибраций. ТЭ вырабатывают электричество напрямую путем бесшумной электрохимической реакции. Единственным продуктом выброса при работе являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. ТЭ собираются в сборки, а затем в отдельные функциональные модули. Существует несколько различных типов топливных элементов, каждый из которых использует различные химические процессы. Топливные элементы обычно классифицируются по их рабочей температуре и типу электролита, который они используют. Некоторые типы ТЭ годятся для использования в стационарных электростанциях, другие для небольших портативных устройств или для питания автомобилей и т. д. .

ТЭ делятся на высокотемпературные и низкотемпературные.

Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования.

Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

2.2.1. Топливный элемент с полимерной мембраной обмена

Топливный элемент с полимерной мембраной обмена (PEMFC) является одной из перспективных технологий топливных элементов. Он состоит:

1. Анод - негативная клемма ТЭ. Он проводит электроны, которые высвобождаются из молекул водорода, после чего электроны используются во внешней цепи. В нем выгравированы каналы, по которым газообразный водород распределяется равномерно по поверхности катализатора.

2. Катод — позитивная клемма ТЭ, также имеет каналы для распределения уже кислорода по поверхности катализатора. Он также проводит электроны обратно из внешней цепи катализатора, где они могут соединиться с ионами водорода и кислорода с образованием воды.

3. Электролит - протонно-обменная мембрана . Это специально обработанный материал, который проводит только положительно заряженные ионы и блокирует электроны. У PEMFC, мембрана должна быть увлажненной, чтобы нормально функционировать и оставаться стабильной.

4. Катализатор — это специальный материал, который способствует реакции кислорода и водорода. Обычно он изготавливается из наночастиц платины нанесенных на копировальную бумагу или ткань. Катализатор имеет такую структуру поверхности, чтобы максимальная площадь поверхности платины могла быть подвержена воздействию водорода или кислорода.

Реакция в одиночном топливном элементе производит только приблизительно 0,7 В. Чтобы повысить напряжение, много отдельных топливных элементов должны быть объединены.

2.2.2. Водородно-кислородный топливный элемент

Это - химический источник тока, в котором осуществляется непрерывная подача активных веществ извне в зону электрохимической реакции. Рис. 1.Он работает при обычных или слегка повышенных температурах с применением водных электролитов. Элементы этого типа характеризуются наличием изготовленных из соответствующих электропроводящих материалов (уголь, никель и др.) пористых электродов, которые частично пропитаны электролитом, но сохраняют газопроницаемость. На внутренней поверхности пор, куда поступают активные газы (водород и кислород) происходят электродные процессы, заключающиеся в переходе адсорбированных газов в ионное состояние и являющиеся источником электродвижущей силы элемента.

Основное преимущество предлагаемого водородно-кислородного ТЭ заключается в том, что созданная вначале (при изготовлении элемента) степень пропитки электродов остается почти постоянной, так как дальнейшая самопроизвольная пропитка электродов из загущенного электролита не происходит. Или это имеет место лишь в незначительной степени, что обусловливает высокую стабильность работы электродов . Изделие работает без повышенного давления газа.

Недостатком электродов, работающих без повышенного давления газа, является значительно меньшая плотность тока, которую способны выдерживать такие электроды.

Рассмотрим подробнее водородно-кислородный топливный элемент с водным электролитом и пористыми электродами из никеля, угля или иного электропроводного материала, работающий без применения избыточного давления подаваемого газа (в частности, воздуха). ТЭ отличается тем, что, в целях предотвращения постепенного промокания электродов, а также увеличения стабильности и величины разрядного тока, применен электролит в загущенном состоянии. Электродные пластины обеих полярностей (или одной из них - преимущественно положительные) составлены из большого числа узких тонких пластинок, расположенных параллельно одна другой и перпендикулярно к плоскости электродной пластины. Они разделены на части тонкими пористыми прокладками, пропитанными электролитом, а на остальной части газом (водородом для отрицательного электрода и кислородом или воздухом для положительного электрода).

Кислородно-водородный элемент со щелочным электролитом — один из наиболее перспективных современных топливных элементов. Его преимущества заключаются в относительной простоте конструкции, высокой степени надежности, возможности использовать газы без специальной очистки и при низком парциальном давлении, включая использование атмосферного кислорода. Кроме того, этот элемент сохраняет достоинства лучших топливных элементов других систем: непрерывность работы в течение относительно длительного времени, отсутствие вредных выделений, высокий коэффициент использования активных веществ, стабильность напряжения.

2.2.3. Щелочные топливные элементы (ЩТЭ)

Щелочные топливные элементы (ЩТЭ) - одна из наиболее изученных технологий, используемая с середины 1960-х гг. агентством НАСА в программах "Аполлон" и "Спейс Шаттл". На борту этих космических кораблей топливные элементы производят электрическую энергию и питьевую воду. Щелочные топливные элементы - одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°С до 220°С. Носителем заряда в ЩТЭ является гидроксильный ион (ОН -), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e - Реакция на катоде: O 2 + 2H 2 O + 4e - => 4OH - Общая реакция системы: 2H 2 + O 2 => 2H 2 O.

Достоинством ЩТЭ является то, что они дешевле в производстве, так как цена на их катализаторы ниже. Кроме того, ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных ТЭ.

Одна из характерных особенностей ЩТЭ - высокая чувствительность к CO 2 , который может содержаться в топливе или воздухе. CO 2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность ТЭ. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H 2 O и CH 4 , которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ .

3. Экспериментальная часть

Для проведения экспериментов было решено изготовить действующую модель водородно-кислородной топливной ячейки со щелочным электролитом (раствор КОН). Так как для работы такой ячейки необходимы газообразные водород и кислород, так же пришлось изготовить устройство для их непрерывного получения - электролизер. В силу того, что ячейка при своей работе нагревается, электролизер был дополнен охладителем газов на базе термоэлектрического холодильника на элементе Пельтье. Электролизер, также нагревается до температуры 35 - 40 °С.

3.1. Изготовление топливной ячейки

Топливная ячейка представляет собой трехслойную сендвичевую конструкцию. Со сторонами 8 Х 8 см и толщиной 7 мм. Основа конструкции пластины из прозрачного поликарбоната. На рисунке 2 показан вид на боковую пластину. Видны штуцера для подвода газа, электрический контакт и винты, стягивающие конструкцию в единое целое. На рисунке 3 показан вид на топливную ячейку с торцевой поверхности.

В центральной части сделано круглое окно, куда вклеена протонно-обменная мембрана. В качестве мембраны использована микроканальная пластина. В каналах мембраны за счет капиллярных сил хорошо удерживается электролит - 5% раствор KOH. Большое количество отверстий микронных размеров обеспечивает беспрепятственный транспорт протонов через пластину, которая является диэлектрическим изолятором. Она химически инертна по отношению к едкому калию КОН. Внешний вид центральной секции с микроканальной пластиной представлен на рисунке 4.

На боковых частях топливной ячейки наклеена алюминиевая фольга, являющаяся электрическим контактом для электродов. Электроды представляют собой диски из углевойлока. Углевойлок удовлетворяет основным требованиям для успешного функционирования топливной ячейки, а именно - высокая электропроводность, пористость структуры для прохода газа и развитость поверхности для эффективной работы катализатора, а также химическая инертность по отношению к электролиту КОН. Боковых частей две. Внешний вид пластины представлен на рисунке 5.

По периметру топливная ячейка собирается в единый пакет с помощью 9 винтов. В боковых частях закреплены штуцеры для подвода и удаления газа.

3.2. Изготовление электролизера для непрерывного получения водорода и кислорода

Главная часть электролизера представляет собой U- образную стеклянную трубку, заполненную 10% раствором KOH. Водород и кислород получаются при разложении дистиллированной воды под действием электрического тока. Электроды пропущены через верхние резиновые пробки, вставленные в открытые колена трубки. Внешний вид полностью собранного электролизера, с подключенной к нему топливной ячейкой - рис. 6. Получающиеся в процессе работы газы отводятся через систему шлангов, подсоединенных к верхним частям стеклянной трубки. В силу того, что дистиллированная вода обладает значительным сопротивлением, и скорость ее разложения будет незначительной, в воду добавлена щелочь - едкий калий КОН. Сопротивление резко снижается, возрастает сила тока и, как следствие, скорость разложения воды на водород и кислород. Для химической стойкости электроды, погруженные в раствор, выполнены из никеля.

В процессе работы уровень электролита понижается за счет разложения воды и его приходится доводить до уровня, добавляя новые порции воды. При этом щелочь не расходуется. Для пополнения уровня воды без разгерметизации электролизера, в одну из верхних резиновых пробок подсоединен шприц с водой. За один час работы электролизера при напряжении 14 В и силе тока 2 А образуется около 120 см 3 Н 2 и 60 см 3 О 2 . Скорости получения газов достаточно для проведения эксперимента. Также, учитывая взрывоопасность смеси Н 2 и О 2, скорость их получения недостаточна для образования гремучего газа в помещении. Водород и кислород поступают каждый по своей магистрали, объединяясь только внутри топливной ячейки. Поток газов можно направлять сразу в топливную ячейку или запасать в шприцах, объемом по 60 см 3 , подключенных к магистралям. При этом поток газов к ячейке перекрывается роликовыми зажимами.

Все основные элементы электролизера закреплены на универсальном штативе с помощью муфт и зажимов. Источником питания служит регулируемый лабораторный блок питания. Получающийся в процессе разложения водород и кислород проходят через охладитель на элементе Пельтье. Охладитель представляет собой собственно элемент Пельтье, на холодном спае которого с использованием теплопроводящей пасты КПТ-8 установлена алюминиевая пластина с закрепленными на ней медными трубками для протока газов. Скорость протока газа небольшая. Поэтому газ успевает охладиться до температуры +10 °С на выходе, при температуре +20 °С на входе. Горячий спай охлаждается медным пластинчатым радиатором с принудительным обдувом воздухом. Радиатор также закреплен на горячем спае элемента Пельтье с использованием теплопроводящей пасты КПТ-8. Рис.7.

Таким образом, газы предварительно охлаждаются, что повышает их плотность и позволяет пользоваться ячейкой без принятия мер по ее принудительному охлаждению. В процессе получения электричества ячейка подвержена саморазогреву в результате взаимодействия водорода с кислородом. При работе ячейки вырабатывается электричество и образуется вода. Этот процесс, по сути, является горением водорода в атмосфере кислорода. Поэтому нагрев ячейки - нормальное явление. Потребляемая сила тока в 5 А складывается из тока, потребляемого электролизером, элементом Пельтье и вентилятором, охлаждающим горячий спай элемента Пельтье.

Для подтверждения работоспособности топливной ячейки при использовании в ней в качестве катализатора игольчатых монокристаллов оксида молибдена, активированных золотом, был проведён опыт с ячейкой без катализаторов. Цель: измерение ЭДС ячейки. После подключения собранной ячейки к электролизеру она была выдержана в потоке газов в течении 15 минут, для гарантированного удаления из пористых электродов атмосферных газов. Перед опытом ячейку разобрали. Протонно-обменную мембрану смочили раствором электролита - 5% раствором КОН. Максимальное значение ЭДС которое удалось получить: 15,5 мВ. Т.е. без катализаторов Н 2 и О 2 взаимодействуют, но незначительно.

В следующем эксперименте на торцевые части углеродных пористых электродов был нанесен слой катализатора, представляющего собой игольчатые монокристаллы оксида молибдена, легированные золотом. Ячейку для этого разбирали. Катализатор наносился на оба электрода. Измельченный катализатор (рис.8) насыпали на поверхность электрода и равномерно распределили. Он был на той части электрода, которая обращена к алюминиевому покрытию. Ячейку собрали и подключили к электролизеру. Её выдержали в потоке газов в течение 15 минут. Максимальное значение ЭДС в случае применения катализаторов: 600 мВ. Т.е. катализатор значительно увеличил количество водорода и кислорода, реагирующих друг с другом. (Лучшие из известных конструкций аналогичных топливных ячеек со щелочным электролитом и катализаторами на основе платины, имеют ЭДС немного больше 1В.)

4. Заключение

Результаты проекта:1.Изучены теоретические основы функционирования водородно-кислородных ТЭ со щелочным электролитом. 2.Изготовлена действующая разборная модель топливной ячейки с протонно-обменной мембраной из микроканальной пластины и углеродными пористыми электродами. 3. Изготовлен электролизер для получения водорода и кислорода. 4. Проведен эксперимент по эффективному применению в качестве бесплатинового катализатора игольчатых монокристаллов МоО 3 , легированного золотом.

5. Литература

1. «Юсти Э., Винзель А. Топливные элементы. - М.: Мир, 1964. - 305 c.

2 http vezdehod-strannik.ru

3. http://att-vesti.neva.ru/J33-2.HTM

4. В.Н. Варыпаев, М.А. Дасоян. Химические источники тока: - М.:Мир,1990. - 240 c.

5. https://postnauka.ru/faq/59642#!

6. Приложения

Рис. 1 - Процессы, происходящие при работе ТЭ

Рис. 2 - Топливная ячейка. Рис. 3 - Вид с торцевой поверхности

Рис. 4 - Центральная секция с мембраной Рис. 5 - Боковая крышка.

Рис. 7 - Термоэлектрический охладитель на элементе Пельтье

Рис. 8 а - Катализатор (оксид молибдена МоО 3 ) увеличение в 400 раз; б - изображение на атомно-силовом микроскопе (Центр коллективного пользования Северо - Осетинский государственный университет)