Схема защиты акб от глубокого разряда на микросхеме ne7555. Li-ion и Li-polymer аккумуляторы в наших конструкциях Защита литиевых аккумуляторов

Это устройство ранее уже было кратко описано, попробую написать подробнее и применить на практике.

Прислали хорошо замотав пупыркой


Платы ещё не были разделены, но разделяются хорошо



Размер платы 27х17х4мм
Подключение к зарядке через стандартный разъём microUSB или через дублирующие контакты + и -
Аккумулятор подключается к контактам B+ и B-
Нагрузка подключается к контактам OUT+ и OUT-



Все чипы хорошо известны и проверены

Реальная схема устройства


Отсутствует ограничивающий резистор на входе TP4056 - видимо кабель подключения выполняет эту функцию.
Реальный ток заряда 0,93А.
Зарядка отключается при напряжении на аккумуляторе 4,19В
Потребляемый ток от аккумулятора всего 3мкА, что значительно меньше саморазряда любого аккумулятора.
Описание некоторых элементов
TP4056 - чип контроллера заряда лития на 1А

Подробно описывал тут

DW01A - чип защиты лития

FS8205A - электронный ключ 25мОм 4А

R3 (1,2кОм) - установка тока зарядки аккумулятора

Изменяя его номинал, можно уменьшить зарядный ток


R5 C2 - фильтр цепи питания DW01A. Через него также осуществляется контроль напряжения на аккумуляторе.
R6 - нужен для защиты от переполюсовки зарядки. Через него также измеряется падение напряжения на ключах для нормальной работы защиты.
Красный светодиод - индикация процесса заряда аккумулятора
Синий светодиод - индикация окончания заряда аккумулятора

Переполюсовку аккумулятора плата выдерживает лишь кратковременно - быстро перегревается ключ FS8205A. Сами по себе FS8205A и DW01A переполюсовки аккумулятора не боятся из-за наличия токоограничивающих резисторов, но из-за подключения TP4056 ток переполюсовки начинает течь через него.

При напряжении аккумулятора 4,0V, измеренное полное сопротивление ключа 0,052 Ом
При напряжении аккумулятора 3,0V, измеренное полное сопротивление ключа 0,055 Ом

Защита от токовой перегрузки - двухступенчатая и срабатывает, если:
- ток нагрузки превышает 27А в течение 3мкс
- ток нагрузки превышает 3А в течение 10мс
Информация рассчитана по формулам из спецификации, реально это не проверить.
Длительный максимальный ток отдачи получился около 2,5А, при этом ключ заметно нагревается, т.к. на нём теряется 0,32Вт.

Защита от переразряда аккумулятора срабатывает при напряжении 2,39В - маловато будет, не всякий аккумулятор можно безопасно разряжать до такого низкого напряжения.

Попробовал приспособить эту платку в старую маленькую простейшую детскую радиоуправляемую машинку вместе со старыми аккумуляторами 18500 из ноутбука в сборке 1S2P

Машинка питалась от 3-х батареек АА, т.к. аккумуляторы 18500 значительно толще их, крышку батарейного отсека пришлось снять, перегородки выкусить, а аккумуляторы приклеить. По толщине они получились заподлицо с днищем.


Платку приклеил герметиком к крыше, под разъём сделал вырез.




Теперь аккумуляторы можно заряжать так


Красный индикатор зарядки хорошо просвечивает через красную крышу.


Синий индикатор окончания зарядки через крышу почти не виден - его видно только со стороны разъёма подключения.


Машинка снизу выглядит как с газовыми баллонами:)


На этих баллонах машинка катается минут 25. Не слишком много, ну да ладно, наиграться хватает. Заряжается машинка около часа.

Вывод: маленькое и очень полезное для творчества устройство - можно брать. Буду заказывать ещё.

Планирую купить +227 Добавить в избранное Обзор понравился +103 +259

Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.

У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():

На фото мы видим: 1 - контроллер защиты (сердце всей схемы), 2 - сборка из двух полевых транзисторов (о них напишу ниже), 3 - резистор задающий ток срабатывания защиты (например при КЗ), 4 - конденсатор по питанию, 5 - резистор (на питание микросхемы-контроллера), 6 - терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).

Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():

Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров - ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().

И тут, откуда не возьмись, явилось чудо - сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.

Всем известно, что глубокая разрядка аккумуляторных батарей резко уменьшает срок эксплуатации последних. Для того чтобы исключить такой режим работы аккумуляторов применяют различные схемы – ограничители разрядки. С появлением микросхем и мощных полевых переключательных транзисторов такие схемы стали иметь небольшие габариты, стали более экономичными.

Схема ограничителя, ставшая уже классической, показана на рисунке 1, ее можно встретить во многих схемах радиолюбителей. Устройство предназначено для работы в составе бесперебойного источника питании домашнего инкубатора. Полевой транзистор VT1 – IRF4905 в данной схеме выполняет функцию ключа, а микросхема КР142ЕН19 является компаратором напряжения.

При замыкании контактов К1, это контакты реле, которые подключают аккумулятор при отсутствии напряжения сети 220В, на схему подается напряжение с аккумуляторной батареи GB1, но так как сам по себе транзисторный ключ открыться не может, то для его запуска введены два дополнительных элемента – С1 и R2. И так, при появлении напряжения на входе, начинает заряжать конденсатор С1. В первый момент начала его заряда затвор транзистора оказывается зашунтирован этим конденсатором на общий провод схемы. Транзистор открывается и если напряжение на аккумуляторной батарее находится выше установленного на компараторе порога, он остается открытым и далее, если же напряжение ниже…, то транзистор сразу же закрывается. Порог отключения аккумулятора от нагрузки устанавливается резистором R3. Компаратор работает следующим образом. По мере разряда аккумуляторной батареи напряжение на выводе 1 микросхемы DA1 КР142ЕН19 будет уменьшаться и как только оно приблизится к опорному напряжению данной микросхемы -2,5В, начнет увеличиваться напряжение на ее выводе 3, что соответствует уменьшению напряжения на участке исток-затвор транзистора VT1. Транзистор начнет закрываться, что приведет к еще большему уменьшению напряжению на выводе 1 DA1. Возникает лавинообразный процесс закрывания VT1. В результате этого нагрузка будет отсоединена от аккумулятора. Ток нагрузки, коммутируемый данным транзистором, может быть увеличен в разы при условии соблюдения теплового режима транзистора. Я имею в виду установку его на радиатор, но не забывайте, что при температуре кристалла 100°С, максимальный ток стока уменьшается до 52А. Мощность стока транзистора 200Вт дана в справочнике для температуры 25°С.

Резистор R1 нужен для создания необходимого тока через микросхему, который должен быть не менее одного миллиампера. Конденсаторы С1 и С3 блокировочные. R4 это сопротивление нагрузки. Если последовательно с нагрузкой включить диод, лучше с барьером Шоттки, то можно ввести в данную схему индикатор перехода работы на аккумуляторную батарею – светодиод HL1. Для экономии энергии батареи в качестве индикатора лучше взять сверхъяркий светодиод и подобрать номинал резистора R по нужной яркости.

Рисунок печатной платы ограничителя разряда аккумулятора скачать можно здесь.

Устройство для защиты 12v аккумуляторов от глубокого разряда и короткого замыкания с автоматическим отключением его выхода от нагрузки.

ХАРАКТЕРИСТИКИ

Напряжение на аккумуляторе, при котором происходит отключение - 10± 0.5V. (У меня вышло ровно 10,5 В) Ток, потребляемый устройством от аккумулятора во включенном состоянии, не более - 1 мА. Ток, потребляемый устройством от аккумулятора в выключенном состоянии, не более - 10 мкА. Максимально допустимый постоянный ток через устройство - 5А.(30 Ватт лампочка 2,45 А - Мосфит без радиатора +50 градусов(комнатная +24))

Максимально допустимый кратковременный (5 сек) ток через устройство - 10А. Время выключения при коротком замыкании на выходе устройства, не более - 100 мкс

ПОРЯДОК РАБОТЫ УСТРОЙСТВА

Подключите устройство между аккумулятором и нагрузкой в следующей последовательности:
- подключите клеммы на проводах, соблюдая полярность (оранж. провод +(красный), к аккумулятору,
- подключите к устройству, соблюдая полярность (плюсовая клемма помечена значком +), клеммы нагрузки.

Для того чтобы на выходе устройства появилось напряжение нужно кратковременно замкнуть минусовой выход на минусовой вход. Если нагрузку кроме аккумулятора питает другой источник, то этого делать не надо.

УСТРОЙСТВО РАБОТАЕТ СЛЕДУЮЩИМ ОБРАЗОМ;

При переходе на питание от аккумулятора, нагрузка разряжает его до напряжения срабатывания устройства защиты (10± 0.5V). При достижении этой величины, устройство отключает аккумулятор от нагрузки, предотвращая дальнейший его разряд. Включение устройства произойдет автоматически при подаче со стороны нагрузки напряжения для заряда аккумулятора.

При коротком замыкании в нагрузке устройство также отключает аккумулятор от нагрузки, Включение его произойдет автоматически, если со стороны нагрузки подать напряжение больше 9,5V. Если такого напряжения нет, то надо кратковременно перемкнуть выходную минусовую клемму устройства и минус аккумулятора. Резисторами R3 и R4 устанавливается порог срабатывания.

Запчасти

1. Монтажная плата(не обязательно, можно навесу)
2. Полевой транзистор любой, подбирайте по А и В. Я взял RFP50N06 N-канал 60В 50А 170 град
3. Резисторы 3 на 10 ком, и 1 на 100 ком
4. Биполярный транзистор КТ361Г
5. Стабилитрон 9.1 В
Доп. Можно клеммы + Микрик для запуска.(Я себе не делал т.к. у меня это будет часть другого устройства)
6. Можно по светодиоду на вход и выход для наглядности(Подбирайте резистор, паяйте в параллельно)

Паяльник+олово+спиртоканифоль+кусачки+проводки+мультиметр+нагрузка и т.д. и т.п. Паял Оловянно-сопельным путём. Травить на плате мне не охота. Лейаута нет. Нагрузка 30 Ватт, Ток 2,45 А полевик греется на +50 град(комнатная +24). Охлаждение не нужно.

Пробывал нагрузку 80 Ватт … ВАХ-ВАХ. Температура за 120 град. Дорожки начали краснеть… Ну сами знаете нужно радиатор, Хорошо пропаянные дорожки.


Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше - 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.

«С» значит Capacity

Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду.

А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317


Рис. 5.


Схема с применением обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

Надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

Схема простого зарядного устройства на LTC4054


Рис. 6.


Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).


Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле

I=1000/R,
где I - ток заряда в Амперах, R - сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.


Рис. 8.


Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Невыполнение первых трех пунктов приводит к пожару, остальных - к полной или частичной потере ёмкости.

Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления - создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.

Для не очень больших токов подходят старые аккумуляторы от сотовых.


Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.

Где я применяю литиевые батареи

Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!

Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.

Ставлю в светодиодные фонарики.

В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.

Вообще ставлю везде, где получается, вместо батареек.

Где я покупаю литий и полезности по теме

Продаются . По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.

На счёт ёмкости китайцы обычно врут и она меньше написанной.


Честные Sanyo 18650